
CUDA Accelerated Robot Localization and Mapping

Haiyang Zhang, Fred Martin
Computer Science Department

University of Massachusetts Lowell
Lowell, MA 01854, USA

hzhang@cs.uml.edu, fredm@cs.uml.edu

Abstract - We present a method to accelerate robot

localization and mapping by using CUDA (Compute Unified

Device Architecture), the general purpose parallel computing

platform on NVIDIA GPUs. In robotics, the particle filter-based

SLAM (Simultaneous Localization and Mapping) algorithm has

many applications, but is computationally intensive. Prior work

has used CUDA to accelerate various robot applications, but

particle filter-based SLAM has not been implemented on CUDA

yet. Because computations on the particles are independent of

each other in this algorithm, CUDA acceleration should be highly

effective. We have implemented the SLAM algorithm's most time

consuming step, particle weight calculation, and optimized

memory access by using texture memory to alleviate memory

bottleneck and fully leverage the parallel processing power. Our

experiments have shown the performance has increased by an

order of magnitude or more. The results indicate that oftloading

to GPU is a cost-effective way to improve SLAM algorithm

performance.

Keywords - robot; localization; mapping; SLAM; GPU;
GPGPU; parallel; CUDA

I. INTRODUCTION

For a mobile robot in unknown environments, it is
important to simultaneously localize itself and generate maps
of the environments. The SLAM (Simultaneous Localization
and Mapping) algorithm [1, 2] is usually used in these cases.
Based on a probabilistic model, the SLAM algorithm estimates
the robot state from its prior state, the current motor
commands, and sensor readings. Particle filter-based SLAM is
easy to implement and applicable to non-linear and non
Gaussian systems.

The particle filter is a sequential Monte Carlo method, in
which system state is represented by a set of particles. Each
particle is a data object containing one of the hypothetical robot
states from the distribution and a "weight" value. In each
sensing cycle, we calculate the weight value according to how
closely this state matches the current sensor readings, and re
sample the particle set based on their weights.

To maintain an accurate representation of the state
distribution, we must have a large number of particles, which
makes the particle filter computationally intensive. But most
computing steps in the particle filter are done independently on
each particle, so it is inherently suitable for parallel processing.

CUDA (Compute Unified Device Architecture) [3] is a
parallel computing platform running on NVIDIA GPUs
(Graphics Processing Units). It is one of the popular GPGPU

978-1-4673-6225-2/13/$31.00 ©2013 IEEE

(General-Purpose computing on GPU) platforms. CUDA
includes the compiler and driver to build and run CUDA C,
which is an extended C/C ++ language supporting both CPU
and GPU, and communication between them.

The present work extends prior work in this area. Here is a
brief review of related research done to accelerate particle
filters and other robot applications with CUDA.

To efficiently utilize CUDA, Chao et al. describe an
algorithm to implement a particle filter on CUDA [4]. Two
enhancements are used-finite-Redraw Importance-Maximiz
ing (FRIM) prior editing and localized resampling. FRIM prior
editing increases the coverage of the particles to important
region of the state distribution. And, localized resampling
reduces the overhead to access global memory. They use
bearings-only tracking (BOT) problem for the performance
benchmarking. The optimizations have increased performance
by 5.73 times than a direct implementation on a GPU. This
paper shows CUDA can effectively accelerate particle filter
used in BOT problem, where the resampling step is the slowest
step. But, in our work on SLAM problem, we have found that
the weight calculation is the most time consuming step, and
focused on accelerating this part of the particle filter.

Xu et at. present an implementation of the "saliency map
model" on CUDA [5]. The saliency map model is a popular
computational model for robotic vision to extract interesting
objects from camera inputs. But the computational cost is high,
and it is not efficient to run on CPU. This paper implements the
saliency map model on CUDA-based GPU, and can process
high speed camera inputs in real time, which is much faster
than a standard CPU implementation. The implementation uses
different memory types in the CUDA memory hierarchy
according to the different requirement in each part of the
algorithm.

GPU computing is used by Tuck et al. to accelerate a
mobile robot control system [6]. The map-merging step
involves combining laser rangefinder data with stereovision
inputs, which is slow on a CPU. After porting this and some
other steps to be run on GPU, and optimizing with a GPU
targeting compiler, Bacon, the overall performance has
increased to near real time. The computing steps that are
parallel in nature, including laser data processing and map
merging, are accelerated greatly by GPGPu.

Also, Par and Tosun describe CUDA acceleration for
localization based on GPS and map matching [7]. The vehicle
location is estimated by a GPS reading first. Then current GPS

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

and speed data are combined with odometer data and history
locations to find best matches on the pre-loaded map by
particle filter. The particle weight is based on zones and map
topology. Running these procedures on GPU has largely
improved performance.

These prior examples utilized GPGPU on various
algorithms and robot applications, but have not implemented
the SLAM algorithm on CUDA, which is the area we have
developed in this paper. In our work, we analyzed the
computing load of each step of the particle filter-based SLAM
algorithm, and found that the particle weight calculation step
consumes the majority of the CPU time. For comparison, we
implemented this step on a multi-core CPU and a CUDA
device. Because our access of memory is spatially localized,
we were able to use the texture memory of the CUDA memory
hierarchy to store the global map, thereby optimizing memory
performance. We tested our program with data from a real
robot, and found CUDA accelerated SLAM performs much
faster than that on multi-core CPU with the same cost.

II. ALGORITHM AND OPTIMIZATION

The particle filter-based SLAM algorithm [2] is our
localization and mapping algorithm. A particle is one of the
possible robot states. Our robot runs on a building floor, and
turns with differential steering, so the state includes three
variables: x, y coordinates for its location on the floor and yaw
for its orientation. For an unknown environment, the initial
state is set to all zero. For each round of control and sensor
data, the states are updated by motor commands including
speed and turn-rate, electronic compass readings, and refmed
by the laser rangefmder data with the weighting and
resampling. In this section, we first describe the algorithm in
part A, and then introduce the CUDA memory hierarchy in part
B, which is important for the optimizations in part C.

A. Particle filter based SLAM algorithm

i) initialize particle states
We initialize all particle states to be x=O, y=O, and yaw=O,

because we assume the robot is in an unknown environment.
The particle set will be updated in the following step for each
data cycle.

2) Read data from logfile
The data in a new control and sensing cycle are read from a

log file generated by a real robot for off-line processing. The
data include the speed and turn-rate in motor control
commands, the time elapsed since last data point, the electronic
compass reading, and the laser rangefinder data.

3) Apply motion data with randomization
The motion data, including motor command and electronic

compass reading, are converted to the distance and angle
travelled by the robot. The hypothetical current state
distribution is the conditional probability distribution:

Of which, X, is the current robot state at time t, and

X'_I is the previous robot state at time t- l, and U, is the

motion data including the distance and angle travelled by the
robot since last time point.

But, we don't know the exact distribution of X, ' so the

motion data including distance and angle are added into the
state in each particle with some randomization to reflect the
random error of the system and noise from the environment.

4) Copy data into the video card
The GPU can only access memory on the video card

directly, so we need to copy the data, including the particle
array and laser rangefinder readings from system (host)
memory to GPU (device) memory.

5) Particle weight calculation

The particle weight W , reflecting how important this
particle is among the state distribution, is the conditional

probability of Z, ' assuming the robot state is X, :

Of which, Z, is the current observation data from the laser

range finder, and X, is the robot state in each particle.

It is not practical to calculate this conditional probability,
because we do not know the error distribution. Instead, we use
the matching score between the sensor readings and
hypothetical states to estimate the conditional probability.

The laser rangefinder returns an array of ranges of the
surrounding objects. For each particle, we calculate the object
locations from the laser data and the particle state. These
hypothetical locations are compared to the generated map in
previous cycles, and the number of matches is counted as the
particle weight.

6) Copy datafrom the video card
The CPU cannot access memory on the video card either,

so we copy the particle weights back to host memory for other
steps running on CPU.

7) Resample the particles
We resample the particles based on their weights. Particles

with more weight are resampled with a higher probability. The
resampling is done with replacement, and the total number of
particles remains the same. The end result is that the particle
set becomes more closely reflect the actual robot state
distribution.

8) Estimate the robot location and update the map
We estimate the robot location by calculating the mean

value of the resampled particle states. Then, the map is updated
according to the current laser data. As the map representation,
we used an occupancy grid map. The points reflecting laser
rays are marked as blocked, and the region between laser
rangefmder and these points is marked as open space.

Also, we transfer the map to the device memory to be
accessed by GPU in the next cycle.

9) Go to step 2, read and process the next data point
See Fig. 1 for the algorithm flow chart.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

Initialize CPU (left side) vs. GPU (right side)
•

particle set •

distribution •
•
•
•
•

Transfer

/ Read the
Apply motion

Control and
data to the

7
particle set

Sensor data
particle set and sensor
distribution data to GPU

Compute each •
• particle's weight
• (matching score •
• with sensor data)
•

Update map with
laser data

r-I T"n,f.,
Re-sample with particle
replacement on .
the particle set weIght

based on weights data from

GPU to CPU

I

i
•
•

Also transfer

/ /
updated map

region to GPU
·

Fig. 1. Particle filter-based SLAM algorithm flow chart

B. CUDA memory hierarchy

Each NVIDIA GPU contains one or more streaming
multiprocessors (SM), and each SM contains mUltiple CUDA
cores [3, 8].

To alleviate memory bottleneck and fully leverage the
GPU's parallel processing power, we also need to understand
the CUDA memory hierarchy. As shown in Fig. 2, the
registers, local, and shared memory are on the GPU chip, and
provide fast access. The global memory is off-chip and larger,
but is slower to access. The constant and texture memory is
part of the global memory but is read-only by CUDA kernel
(the code runs on GPU). Texture memory has a caching
scheme optimized for spatial locality.

I Registers

Local & Shared
Memory

Global Memory
�-------, ,-�----�

Constant I I Texture

Fig. 2. CUDA memory hierarchy

C. Optimize SLAMfor CUDA

To fully exploit the parallel computing power of GPU, we
should have a large number of calls to the same function but
using different data-Single Instruction Multiple Data (SIMD).
These function calls should be independent of each other, so
that one call will not require data from another call, and no
locking or synchronization is necessary. The particle weight
calculation step is computationally intensive, and each particle
is independent of each other, so this step is selected to run on
GPu.

The grid map is too large for on-chip memory, so it has to
be on global memory. The particle set represents the
hypothetical robot states, with random offsets added to reflect
error range. The particles are usually close to each other on the
grid map. The memory accesses to the map are localized in
each particle set. And, the accesses are read only within one
processing cycle. So, using texture memory should enhance the
performance by leveraging the spatial locality of its caching.

Also, the memory copy between host and device is a
relatively time consuming operation due to the large map size.
If we copy the entire grid map (�36MB), it takes around 6ms in
each cycle which is even longer than the weight calculation
time on CUDA with texture memory as shown in Table l. To
minimize the overhead, we copy only a region of the grid map
to the device at the end of each cycle. This region covers the
area between the min and max addresses of the changed
memory. We use only one region to cover all of the updated

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

map memory even there are some unchanged areas in between,
because dividing them into multiple smaller regions will
involve extra overhead for each region. With this optimization
we have reduced map copy time from 6ms to O.Sms.

The other data required for the weight calculation include
laser scan pattern, which is a lSI-length array (this is the same
for every particle). The state includes 3 numbers (x, y, yaw) for
each particle, and the returning weight is one number for each
particle. Thus, the required data transfer between host and
device for the weight calculation is not too large. See Fig. 3 for
the algorithm pseudo code.

Algorithm 1: SLAM with CUDA Acceleration
1: IIGPU code:
2: Function getWeightO
3: if-current thread index among all blocks
4: step f-total number of threads on all blocks
5: while i<N do lIN is the number particles
6: calculate matching score of:
7: Xli] + LaserData v.s. CurrentMap
8: i f-i + step
9: endwhile
10:
II: IICPU code:
12: Function main(datafile)
13: X[I. . . N] f-{x=O, y=0, yaw =O} Ilinitialize all particles
14: while (read(datafile) != EOF) do
IS: fori=l to Ndo
16: Xli] f-Xli] + Motion + RandomNoise
17: endfor
18: copyHostToDevice (X[I . . . N])
19: copyHostToDevice(LaserData)
20: call getWeightO lion GPU
21: copyDeviceToHost(W[I . . . N]) Ilcopy particle weights
22: resample(X[l. . .N]) based on W[I. . . N]
23: Xmean = AverageState(X[I . . . N])
24: updateMap(Xmean, LaserData)
25: copyHostToDevice(ChangedMapRegion)
26: endwhile

Fig. 3. Pseudo code of SLAM algorithm with CUDA acceleration

III. IMPLEMENT A TlON AND EXPERIMENTS

A. Hardware and development platform

To implement and test the performance of the SLAM
algorithm on CUDA, we selected a GPU, the NVIDIA
GeForce GTX 660, and a CPU, the Intel Core i5-3570K. These
were mid-range devices with similar pricing when purchased.

NVIDIA GTX 660 [9] uses the GK106 "Kepler" GPU
chip, which contains five streaming multiprocessors, and each
multiprocessor includes 192 CUDA cores. There are 960
CUDA cores in total on the chip. The base clock rate is 9S0
MHz, and can boost up to 1033 MHz. The global memory size
is 2 GB.

Intel Core i5-3570K CPU [10] is the third generation Intel
Core series processors, which uses the "Ivy Bridge"
microarchitecture. It contains four cores, and can run 4 parallel
threads simultaneously. The clock frequency is 3.4 GHz, or 3.S
GHz in turbo mode.

The CUDA Toolkit 5.0 contains the latest compiler (nvcc),

drivers, libraries, and code samples. It is used to compile our
program which includes both CPU and GPU code.

Our experimental robot system is called "Stark," which was
designed and built by our IGVC (Intelligent Ground Vehicle
competition) team. The robot is four-wheel driving with skid
steering. Its sensors include a SICK LMS200 laser rangefinder
and electronic compass. The motion and sensor data were
collected during our previous work [11], and saved into log
files for offline analysis. The robot ran through the hallway in
our computer science building. The motor commands (speed
and turn rate), electronic compass readings, and laser scan data
were recorded.

B. IdentifY the bottleneck on CPU implementation

To fmd the bottlenecks on CPU implementation, we first
implemented the particle filter-based SLAM algorithm on the
quad-core cpu. The weight calculation step runs on 4 cores in
parallel, but still takes the majority of the computational time.
As shown in Table 1, the weight calculation step on CPU
consumes 95% of the time in each data cycle. So, to explore
the massive parallel computing power of GPU, we focused on
accelerating this step by using CUDA. And, the performance
data on the quad-core CPU are used as the baseline to analyze
the GPU acceleration results.

C. Implementation on CUDA

CUDA C is an extended C/C++ language, which has a
similar syntax to standard C/C++, but with some extensions to
call functions running on NVIDIA GPU, also to access the
metadata such as the thread dimension and index. The CUDA
platform consists of hundreds of cores - 960 in our case. The
number of threads can be larger than the number of cores, and
scheduled by the CUDA runtime automatically. The threads
are further grouped into blocks; threads within each block can
access a set of shared memory. A specialized function call is
made to call CUDA kernel (the code running on GPU
exclusively). The CUDA kernel code can make calls to other
functions labeled as GPU code, or functions in CUDA libraries.
But the kernel cannot call the regular functions in host code nor
standard C libraries. The number of blocks and the number of
threads in each block are specified in the call.

To reduce memory traffic between host memory and device
memory, we only copy the required data in each processing
cycle. These data include laser scan pattern, particle states
before calling the kernel, particle weights after calling the
kernel, and a region covering all changed portions of the grid
map at the end of each cycle.

After passing the particle set and laser scan pattern, each
GPU thread access its assigned particle state by using its block
and thread indexes. The algorithm for weight calculation is
same as the CPU version.

D. Optimization by using texture memory

As we discussed previously, the memory access of the grid
map during weight calculation has spatial locality. Texture
memory has the appropriate caching scheme to speed up
caching efficiency for this case. Texture memory is still part of
the global memory, but bound to texture mode after allocation.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

It can be updated via host to device memory copy operations,
but cannot be written by CUDA kernel. We used texture
memory for the grid map, because the map is not updated
during the weight calculation step.

E. Experiment results

As shown in Table 1, the weight calculation step is the
most time consuming step in the algorithm, even it is already
running in parallel on the quad-core cpu.

After ported the weight calculation step to CUDA, the
average time of this step dropped from 100.5ms to 6.67ms,
which is 15 times improvement in performance.

With texture memory, the performance improved even
more. The weight calculation step has improved 28 times to
3.55ms, and the entire cycle has improved 11 times.

Fig. 4 shows two different paths traveled by the robot in
our building. The maps generated by our SLAM algorithm
during the two runs are shown in Fig. 5.

======'J11 J�II =

�
------IRun 1--------

Fig. 4. The paths of the robot. In "Run 1 ", the robot goes from one end of the
corridor to the other end. In "Run 2" it goes from one point from the left side

to the middle area, which is the elevator hallway, with some turns.

TABLE!. PERFORMANCE COMPARISON BETWEEN CPU-ONL Y AND CUDA-ACCELERA TED IMPLEMENTA nONS

A verage time spent to CPU only CUDA accelerated CUDA accelerated
(milliseconds) without Texture with Texture

memory memory
(milliseconds) (milliseconds)

Read a new data point from the log file 0.177893 0.188451 0.191382

Apply motion data with randomization l.94319 l.91583 l.90274

Copy data from host to device 0 0.24669 0.249476

Weight calculation 100.502 6.66587 3.55373

Copy data from device to host 0 0.0852671 0.086652

Resample the particle set 1.34339 1.30413 1.30622

Update map and transfer to device memory 1.45296 2.24304 2.256713

TOTAL 105.41 12.65 9.53b

a. There is a slight time increase in the map update step, because the changed region of the grid map needs to be copied into device memory,
which consumes about O.8ms on average.

b. The CUDA-accelerated version has the weight calculation, the most computationally intensive step, running on GPU. Considering this step
alone, the CUDA without texture memory increased performance by 15 times, and CUDA with texture memory increased performance by

28 times. With the entire cycle taken into account, the CUDA with texture memory increased performance by II times totally.

IV. CONCLUSION

The particle filter-based SLAM algorithm is flexible for
unknown error and noise distributions, and maintains accuracy
when the number of particles is large enough. But that leads to
intensive computation, especially in the particle weight
calculation step during our performance tests.

In this paper, we explored the methods to accelerate the
particle filter based SLAM algorithm by NVIDIA's general
purpose GPU computing platform-CUDA. We have ported
the particle weight calculation step, which consumes the
majority of computational time on CPU, into CUDA. We also
used the video card's texture memory, which has a caching
scheme of spatial locality, to speed up our access to the grid
map memory.

To test the performance on CUDA, we selected a quad-core
CPU and a NVIDIA GPU at the same price to compare the
computation time. Our tests have shown significant
performance improvements of the CUDA-accelerated SLAM.

The implementation on CUDA with texture memory increased
performance by 28 times of the weight calculation step. With
the entire data processing cycle taken into account, the CUDA
with texture memory increased performance by 11 times. So,
our results indicate using CUDA is a cost effective way to
accelerate particle filter based SLAM algorithm.

FUTURE WORK

In this work, we have improved performance of the particle
filter-based SLAM algorithm significantly by using CUDA.
But, we believe there is still more potential to explore in this
direction. In the near future, we are considering to accelerate
other steps in the algorithm, and further improve the weight
calculation step already ported into CUDA.

For example, in the step applying the motion data into the
current particle set, the operations are independent in each
particle. So it should be suitable for parallel processing on
CUDA.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

Regarding the weight calculation step, we are thinking
about some methods to further improve the memory access
spatial locality. Because the same sensor readings are shared

J

(a)

(b)

among all particles, we can group the computations according
to the laser scan angles, and check if the memory access
efficiency can be further enhanced.

Fig. 5. Mapping results from SLAM algorithm when the robot runs through our building hallway. The gray area is open space, and the black lines are object
boundaries, such as walls, and the white area are unknown space. (a) is the map from run 1. (b) is the map from run 2

ACKNOWLEDGMENTS

Thanks to Nat Tuck for providing some GPGPU related
information. And, thanks to James Dalphond and John Fertitta
for their assistance on the experimental robot system.

REFERENCES

[I] J. J. Leonard, H.F. Durrant-whyte, "Simultaneous map building and
localization for an autonomous mobile robot," Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
1991), pp.1442-1447.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press,
2006.

[3] 1. Sanders and E. Kandrot, CUDA by Exmaple - An Introduction to
General-Purpose GPU Programming, Addison-Wesley, 2011.

[4] M. Chao, C. Chu, C. Chao, and A. Wu, "Efficient parallelized particle
filter design on CUDA," Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS 2010), pp.299-304.

[5] T. Xu, T. Pototschnig, K. Kuhnlenz, and M. Buss, "A high-speed multi
GPU implementation of bottom-up attention using CUDA," Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA 2009), pp.4I-4 7.

[6] N. Tuck, M. McGuinness, and F. Martin, "Optimizing a mobile robot
control system using GPU acceleration," Proceedings of the Society of
Photo-Optical Instrumentation Engineers Conference Series (SPIE
2011), vol.8301.

[7] K. Par and O. Tosun, "Parallelization of particle filter based localization
and map matching algorithms on multicore/manycore architectures,"
Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV
2011), pp. 820-826.

[8] R. Farber, CUDA Application Design and Development, Morgan
Kaufinann, 2011.

[9] NVIDIA GeForce official website: http://www.geforce.com/

[10] Intel official website: http://www.intel.com/

[II] H. Zhang, F. Martin, "Robotic mapping assisted by local magnetic field
anomalies," Proceedings of the IEEE International Conference on
Technologies for Practical Robot Applications (TePRA 2011), p25-30.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 27,2025 at 04:36:45 UTC from IEEE Xplore. Restrictions apply.

