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Abstract - We present a method to accelerate robot 

localization and mapping by using CUDA (Compute Unified 

Device Architecture), the general purpose parallel computing 

platform on NVIDIA GPUs. In robotics, the particle filter-based 

SLAM (Simultaneous Localization and Mapping) algorithm has 

many applications, but is computationally intensive. Prior work 

has used CUDA to accelerate various robot applications, but 

particle filter-based SLAM has not been implemented on CUDA 

yet. Because computations on the particles are independent of 

each other in this algorithm, CUDA acceleration should be highly 

effective. We have implemented the SLAM algorithm's most time 

consuming step, particle weight calculation, and optimized 

memory access by using texture memory to alleviate memory 

bottleneck and fully leverage the parallel processing power. Our 

experiments have shown the performance has increased by an 

order of magnitude or more. The results indicate that oftloading 

to GPU is a cost-effective way to improve SLAM algorithm 

performance. 
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I. INTRODUCTION 

For a mobile robot in unknown environments, it is 
important to simultaneously localize itself and generate maps 
of the environments. The SLAM (Simultaneous Localization 
and Mapping) algorithm [1, 2] is usually used in these cases. 
Based on a probabilistic model, the SLAM algorithm estimates 
the robot state from its prior state, the current motor 
commands, and sensor readings. Particle filter-based SLAM is 
easy to implement and applicable to non-linear and non
Gaussian systems. 

The particle filter is a sequential Monte Carlo method, in 
which system state is represented by a set of particles. Each 
particle is a data object containing one of the hypothetical robot 
states from the distribution and a "weight" value. In each 
sensing cycle, we calculate the weight value according to how 
closely this state matches the current sensor readings, and re
sample the particle set based on their weights. 

To maintain an accurate representation of the state 
distribution, we must have a large number of particles, which 
makes the particle filter computationally intensive. But most 
computing steps in the particle filter are done independently on 
each particle, so it is inherently suitable for parallel processing. 

CUDA (Compute Unified Device Architecture) [3] is a 
parallel computing platform running on NVIDIA GPUs 
(Graphics Processing Units). It is one of the popular GPGPU 
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(General-Purpose computing on GPU) platforms. CUDA 
includes the compiler and driver to build and run CUDA C, 
which is an extended C/C ++ language supporting both CPU 
and GPU, and communication between them. 

The present work extends prior work in this area. Here is a 
brief review of related research done to accelerate particle 
filters and other robot applications with CUDA. 

To efficiently utilize CUDA, Chao et al. describe an 
algorithm to implement a particle filter on CUDA [4]. Two 
enhancements are used-finite-Redraw Importance-Maximiz
ing (FRIM) prior editing and localized resampling. FRIM prior 
editing increases the coverage of the particles to important 
region of the state distribution. And, localized resampling 
reduces the overhead to access global memory. They use 
bearings-only tracking (BOT) problem for the performance 
benchmarking. The optimizations have increased performance 
by 5.73 times than a direct implementation on a GPU. This 
paper shows CUDA can effectively accelerate particle filter 
used in BOT problem, where the resampling step is the slowest 
step. But, in our work on SLAM problem, we have found that 
the weight calculation is the most time consuming step, and 
focused on accelerating this part of the particle filter. 

Xu et at. present an implementation of the "saliency map 
model" on CUDA [5]. The saliency map model is a popular 
computational model for robotic vision to extract interesting 
objects from camera inputs. But the computational cost is high, 
and it is not efficient to run on CPU. This paper implements the 
saliency map model on CUDA-based GPU, and can process 
high speed camera inputs in real time, which is much faster 
than a standard CPU implementation. The implementation uses 
different memory types in the CUDA memory hierarchy 
according to the different requirement in each part of the 
algorithm. 

GPU computing is used by Tuck et al. to accelerate a 
mobile robot control system [6]. The map-merging step 
involves combining laser rangefinder data with stereovision 
inputs, which is slow on a CPU. After porting this and some 
other steps to be run on GPU, and optimizing with a GPU
targeting compiler, Bacon, the overall performance has 
increased to near real time. The computing steps that are 
parallel in nature, including laser data processing and map 
merging, are accelerated greatly by GPGPu. 

Also, Par and Tosun describe CUDA acceleration for 
localization based on GPS and map matching [7]. The vehicle 
location is estimated by a GPS reading first. Then current GPS 
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and speed data are combined with odometer data and history 
locations to find best matches on the pre-loaded map by 
particle filter. The particle weight is based on zones and map 
topology. Running these procedures on GPU has largely 
improved performance. 

These prior examples utilized GPGPU on various 
algorithms and robot applications, but have not implemented 
the SLAM algorithm on CUDA, which is the area we have 
developed in this paper. In our work, we analyzed the 
computing load of each step of the particle filter-based SLAM 
algorithm, and found that the particle weight calculation step 
consumes the majority of the CPU time. For comparison, we 
implemented this step on a multi-core CPU and a CUDA 
device. Because our access of memory is spatially localized, 
we were able to use the texture memory of the CUDA memory 
hierarchy to store the global map, thereby optimizing memory 
performance. We tested our program with data from a real 
robot, and found CUDA accelerated SLAM performs much 
faster than that on multi-core CPU with the same cost. 

II. ALGORITHM AND OPTIMIZATION 

The particle filter-based SLAM algorithm [2] is our 
localization and mapping algorithm. A particle is one of the 
possible robot states. Our robot runs on a building floor, and 
turns with differential steering, so the state includes three 
variables: x, y coordinates for its location on the floor and yaw 
for its orientation. For an unknown environment, the initial 
state is set to all zero. For each round of control and sensor 
data, the states are updated by motor commands including 
speed and turn-rate, electronic compass readings, and refmed 
by the laser rangefmder data with the weighting and 
resampling. In this section, we first describe the algorithm in 
part A, and then introduce the CUDA memory hierarchy in part 
B, which is important for the optimizations in part C. 

A. Particle filter based SLAM algorithm 

i) initialize particle states 
We initialize all particle states to be x=O, y=O, and yaw=O, 

because we assume the robot is in an unknown environment. 
The particle set will be updated in the following step for each 
data cycle. 

2) Read data from logfile 
The data in a new control and sensing cycle are read from a 

log file generated by a real robot for off-line processing. The 
data include the speed and turn-rate in motor control 
commands, the time elapsed since last data point, the electronic 
compass reading, and the laser rangefinder data. 

3) Apply motion data with randomization 
The motion data, including motor command and electronic 

compass reading, are converted to the distance and angle 
travelled by the robot. The hypothetical current state 
distribution is the conditional probability distribution: 

Of which, X, is the current robot state at time t, and 

X'_I is the previous robot state at time t- l, and U, is the 

motion data including the distance and angle travelled by the 
robot since last time point. 

But, we don't know the exact distribution of X, ' so the 

motion data including distance and angle are added into the 
state in each particle with some randomization to reflect the 
random error of the system and noise from the environment. 

4) Copy data into the video card 
The GPU can only access memory on the video card 

directly, so we need to copy the data, including the particle 
array and laser rangefinder readings from system (host) 
memory to GPU (device) memory. 

5) Particle weight calculation 

The particle weight W , reflecting how important this 
particle is among the state distribution, is the conditional 

probability of Z, ' assuming the robot state is X, : 

Of which, Z, is the current observation data from the laser 

range finder, and X, is the robot state in each particle. 

It is not practical to calculate this conditional probability, 
because we do not know the error distribution. Instead, we use 
the matching score between the sensor readings and 
hypothetical states to estimate the conditional probability. 

The laser rangefinder returns an array of ranges of the 
surrounding objects. For each particle, we calculate the object 
locations from the laser data and the particle state. These 
hypothetical locations are compared to the generated map in 
previous cycles, and the number of matches is counted as the 
particle weight. 

6) Copy datafrom the video card 
The CPU cannot access memory on the video card either, 

so we copy the particle weights back to host memory for other 
steps running on CPU. 

7) Resample the particles 
We resample the particles based on their weights. Particles 

with more weight are resampled with a higher probability. The 
resampling is done with replacement, and the total number of 
particles remains the same. The end result is that the particle 
set becomes more closely reflect the actual robot state 
distribution. 

8) Estimate the robot location and update the map 
We estimate the robot location by calculating the mean 

value of the resampled particle states. Then, the map is updated 
according to the current laser data. As the map representation, 
we used an occupancy grid map. The points reflecting laser 
rays are marked as blocked, and the region between laser 
rangefmder and these points is marked as open space. 

Also, we transfer the map to the device memory to be 
accessed by GPU in the next cycle. 

9) Go to step 2, read and process the next data point 
See Fig. 1 for the algorithm flow chart. 
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Fig. 1. Particle filter-based SLAM algorithm flow chart 

B. CUDA memory hierarchy 

Each NVIDIA GPU contains one or more streaming 
multiprocessors (SM), and each SM contains mUltiple CUDA 
cores [3, 8]. 

To alleviate memory bottleneck and fully leverage the 
GPU's parallel processing power, we also need to understand 
the CUDA memory hierarchy. As shown in Fig. 2, the 
registers, local, and shared memory are on the GPU chip, and 
provide fast access. The global memory is off-chip and larger, 
but is slower to access. The constant and texture memory is 
part of the global memory but is read-only by CUDA kernel 
(the code runs on GPU). Texture memory has a caching 
scheme optimized for spatial locality. 

I Registers 

Local & Shared 
Memory 

Global Memory 
�-------, ,-�----� 

Constant I I Texture 

Fig. 2. CUDA memory hierarchy 

C. Optimize SLAMfor CUDA 

To fully exploit the parallel computing power of GPU, we 
should have a large number of calls to the same function but 
using different data-Single Instruction Multiple Data (SIMD). 
These function calls should be independent of each other, so 
that one call will not require data from another call, and no 
locking or synchronization is necessary. The particle weight 
calculation step is computationally intensive, and each particle 
is independent of each other, so this step is selected to run on 
GPu. 

The grid map is too large for on-chip memory, so it has to 
be on global memory. The particle set represents the 
hypothetical robot states, with random offsets added to reflect 
error range. The particles are usually close to each other on the 
grid map. The memory accesses to the map are localized in 
each particle set. And, the accesses are read only within one 
processing cycle. So, using texture memory should enhance the 
performance by leveraging the spatial locality of its caching. 

Also, the memory copy between host and device is a 
relatively time consuming operation due to the large map size. 
If we copy the entire grid map (�36MB), it takes around 6ms in 
each cycle which is even longer than the weight calculation 
time on CUDA with texture memory as shown in Table l. To 
minimize the overhead, we copy only a region of the grid map 
to the device at the end of each cycle. This region covers the 
area between the min and max addresses of the changed 
memory. We use only one region to cover all of the updated 
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map memory even there are some unchanged areas in between, 
because dividing them into multiple smaller regions will 
involve extra overhead for each region. With this optimization 
we have reduced map copy time from 6ms to O.Sms. 

The other data required for the weight calculation include 
laser scan pattern, which is a lSI-length array (this is the same 
for every particle). The state includes 3 numbers (x, y, yaw) for 
each particle, and the returning weight is one number for each 
particle. Thus, the required data transfer between host and 
device for the weight calculation is not too large. See Fig. 3 for 
the algorithm pseudo code. 

Algorithm 1: SLAM with CUDA Acceleration 
1: IIGPU code: 
2: Function getWeightO 
3: if-current thread index among all blocks 
4: step f-total number of threads on all blocks 
5: while i<N do lIN is the number particles 
6: calculate matching score of: 
7: Xli] + LaserData v.s. CurrentMap 
8: i f-i + step 
9: endwhile 
10: 
II: IICPU code: 
12: Function main(datafile) 
13: X[I. . . N] f-{x=O, y=0, yaw =O} Ilinitialize all particles 
14: while (read(datafile) != EOF) do 
IS: fori=l to Ndo 
16: Xli] f-Xli] + Motion + RandomNoise 
17: endfor 
18: copyHostToDevice (X[I . . .  N] ) 
19: copyHostToDevice(LaserData) 
20: call getWeightO lion GPU 
21: copyDeviceToHost(W[I . . .  N]) Ilcopy particle weights 
22: resample(X[l. . .N]) based on W[I. . . N] 
23: Xmean = AverageState(X[I . . .  N]) 
24: updateMap(Xmean, LaserData) 
25: copyHostToDevice(ChangedMapRegion) 
26: endwhile 

Fig. 3. Pseudo code of SLAM algorithm with CUDA acceleration 

III. IMPLEMENT A TlON AND EXPERIMENTS 

A. Hardware and development platform 

To implement and test the performance of the SLAM 
algorithm on CUDA, we selected a GPU, the NVIDIA 
GeForce GTX 660, and a CPU, the Intel Core i5-3570K. These 
were mid-range devices with similar pricing when purchased. 

NVIDIA GTX 660 [9] uses the GK106 "Kepler" GPU 
chip, which contains five streaming multiprocessors, and each 
multiprocessor includes 192 CUDA cores. There are 960 
CUDA cores in total on the chip. The base clock rate is 9S0 
MHz, and can boost up to 1033 MHz. The global memory size 
is 2 GB. 

Intel Core i5-3570K CPU [10] is the third generation Intel 
Core series processors, which uses the "Ivy Bridge" 
microarchitecture. It contains four cores, and can run 4 parallel 
threads simultaneously. The clock frequency is 3.4 GHz, or 3.S 
GHz in turbo mode. 

The CUDA Toolkit 5.0 contains the latest compiler (nvcc), 

drivers, libraries, and code samples. It is used to compile our 
program which includes both CPU and GPU code. 

Our experimental robot system is called "Stark," which was 
designed and built by our IGVC (Intelligent Ground Vehicle 
competition) team. The robot is four-wheel driving with skid 
steering. Its sensors include a SICK LMS200 laser rangefinder 
and electronic compass. The motion and sensor data were 
collected during our previous work [11], and saved into log 
files for offline analysis. The robot ran through the hallway in 
our computer science building. The motor commands (speed 
and turn rate), electronic compass readings, and laser scan data 
were recorded. 

B. IdentifY the bottleneck on CPU implementation 

To fmd the bottlenecks on CPU implementation, we first 
implemented the particle filter-based SLAM algorithm on the 
quad-core cpu. The weight calculation step runs on 4 cores in 
parallel, but still takes the majority of the computational time. 
As shown in Table 1, the weight calculation step on CPU 
consumes 95% of the time in each data cycle. So, to explore 
the massive parallel computing power of GPU, we focused on 
accelerating this step by using CUDA. And, the performance 
data on the quad-core CPU are used as the baseline to analyze 
the GPU acceleration results. 

C. Implementation on CUDA 

CUDA C is an extended C/C++ language, which has a 
similar syntax to standard C/C++, but with some extensions to 
call functions running on NVIDIA GPU, also to access the 
metadata such as the thread dimension and index. The CUDA 
platform consists of hundreds of cores - 960 in our case. The 
number of threads can be larger than the number of cores, and 
scheduled by the CUDA runtime automatically. The threads 
are further grouped into blocks; threads within each block can 
access a set of shared memory. A specialized function call is 
made to call CUDA kernel (the code running on GPU 
exclusively). The CUDA kernel code can make calls to other 
functions labeled as GPU code, or functions in CUDA libraries. 
But the kernel cannot call the regular functions in host code nor 
standard C libraries. The number of blocks and the number of 
threads in each block are specified in the call. 

To reduce memory traffic between host memory and device 
memory, we only copy the required data in each processing 
cycle. These data include laser scan pattern, particle states 
before calling the kernel, particle weights after calling the 
kernel, and a region covering all changed portions of the grid 
map at the end of each cycle. 

After passing the particle set and laser scan pattern, each 
GPU thread access its assigned particle state by using its block 
and thread indexes. The algorithm for weight calculation is 
same as the CPU version. 

D. Optimization by using texture memory 

As we discussed previously, the memory access of the grid 
map during weight calculation has spatial locality. Texture 
memory has the appropriate caching scheme to speed up 
caching efficiency for this case. Texture memory is still part of 
the global memory, but bound to texture mode after allocation. 
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It can be updated via host to device memory copy operations, 
but cannot be written by CUDA kernel. We used texture 
memory for the grid map, because the map is not updated 
during the weight calculation step. 

E. Experiment results 

As shown in Table 1, the weight calculation step is the 
most time consuming step in the algorithm, even it is already 
running in parallel on the quad-core cpu. 

After ported the weight calculation step to CUDA, the 
average time of this step dropped from 100.5ms to 6.67ms, 
which is 15 times improvement in performance. 

With texture memory, the performance improved even 
more. The weight calculation step has improved 28 times to 
3.55ms, and the entire cycle has improved 11 times. 

Fig. 4 shows two different paths traveled by the robot in 
our building. The maps generated by our SLAM algorithm 
during the two runs are shown in Fig. 5. 

======'J11 J�II = 

� 
------IRun 1--------

Fig. 4. The paths of the robot. In "Run 1 ", the robot goes from one end of the 
corridor to the other end. In "Run 2" it goes from one point from the left side 

to the middle area, which is the elevator hallway, with some turns. 

TABLE!. PERFORMANCE COMPARISON BETWEEN CPU-ONL Y AND CUDA-ACCELERA TED IMPLEMENTA nONS 

A verage time spent to CPU only CUDA accelerated CUDA accelerated 
(milliseconds) without Texture with Texture 

memory memory 
(milliseconds) (milliseconds) 

Read a new data point from the log file 0.177893 0.188451 0.191382 

Apply motion data with randomization l.94319 l.91583 l.90274 

Copy data from host to device 0 0.24669 0.249476 

Weight calculation 100.502 6.66587 3.55373 

Copy data from device to host 0 0.0852671 0.086652 

Resample the particle set 1.34339 1.30413 1.30622 

Update map and transfer to device memory 1.45296 2.24304 2.256713 

TOTAL 105.41 12.65 9.53b 

a. There is a slight time increase in the map update step, because the changed region of the grid map needs to be copied into device memory, 
which consumes about O.8ms on average. 

b. The CUDA-accelerated version has the weight calculation, the most computationally intensive step, running on GPU. Considering this step 
alone, the CUDA without texture memory increased performance by 15 times, and CUDA with texture memory increased performance by 

28 times. With the entire cycle taken into account, the CUDA with texture memory increased performance by II times totally. 

IV. CONCLUSION 

The particle filter-based SLAM algorithm is flexible for 
unknown error and noise distributions, and maintains accuracy 
when the number of particles is large enough. But that leads to 
intensive computation, especially in the particle weight 
calculation step during our performance tests. 

In this paper, we explored the methods to accelerate the 
particle filter based SLAM algorithm by NVIDIA's general 
purpose GPU computing platform-CUDA. We have ported 
the particle weight calculation step, which consumes the 
majority of computational time on CPU, into CUDA. We also 
used the video card's texture memory, which has a caching 
scheme of spatial locality, to speed up our access to the grid 
map memory. 

To test the performance on CUDA, we selected a quad-core 
CPU and a NVIDIA GPU at the same price to compare the 
computation time. Our tests have shown significant 
performance improvements of the CUDA-accelerated SLAM. 

The implementation on CUDA with texture memory increased 
performance by 28 times of the weight calculation step. With 
the entire data processing cycle taken into account, the CUDA 
with texture memory increased performance by 11 times. So, 
our results indicate using CUDA is a cost effective way to 
accelerate particle filter based SLAM algorithm. 

FUTURE WORK 

In this work, we have improved performance of the particle 
filter-based SLAM algorithm significantly by using CUDA. 
But, we believe there is still more potential to explore in this 
direction. In the near future, we are considering to accelerate 
other steps in the algorithm, and further improve the weight 
calculation step already ported into CUDA. 

For example, in the step applying the motion data into the 
current particle set, the operations are independent in each 
particle. So it should be suitable for parallel processing on 
CUDA. 
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Regarding the weight calculation step, we are thinking 
about some methods to further improve the memory access 
spatial locality. Because the same sensor readings are shared 

J 

(a) 

(b) 

among all particles, we can group the computations according 
to the laser scan angles, and check if the memory access 
efficiency can be further enhanced. 

Fig. 5. Mapping results from SLAM algorithm when the robot runs through our building hallway. The gray area is open space, and the black lines are object 
boundaries, such as walls, and the white area are unknown space. (a) is the map from run 1. (b) is the map from run 2 
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