
SPECIAL SECTION

64   acm Inroads   2014 December  •  Vol. 5  •  No. 4

SPECIAL SECTION

INTEGRATING
COMPUTATIONAL

THINKING ACROSS
THE K–8
CURRICULUM

and non-routine manual work have grown as a proportion of the
labor market. Under these circumstances, young people’s prepara-
tion for the workforce must adapt. Two types of tasks that rely
on uniquely human abilities are (1) the ability to integrate many
kinds of information to solve unstructured problems and (2) ac-
quiring, making sense of, and communicating information to oth-
ers. Computational thinking is a key skill in the realm of solving
unstructured problems, understanding and interpreting data, and
communicating information to others using computers. This paper
aims to help K-8 educators and the public at large understand how
computational thinking can be integrated within existing curricu-
lum through three genres of computing activities.

COMPUTATIONAL THINKING
Computational thinking (CT) is a term coined by Jeannette Wing
[22] to describe a set of thinking skills, habits and approaches
that are integral to solving complex problems using a computer
and widely applicable in the information society. Thinking com-
putationally draws on the concepts that are fundamental to com-
puter science, and involves systematically and efficiently process-
ing information and tasks. CT involves defining, understanding,
and solving problems, reasoning at multiple levels of abstraction,
understanding and applying automation, and analyzing the appro-
priateness of the abstractions made.

The International Society for Technology in Education (ISTE)
and the Computer Science Teacher Association (CSTA) col-
laborated with leaders from higher education, industry and K-12
education to develop an operational definition of computational
thinking that provides a framework and vocabulary that resonates
with K-12 educators [4]. In the operational definition, computa-

The excitement around K-12 Computing
Education in the United States is rapidly

increasing and K-8 holds great potential as the
entry point for the integration of computing. We
examine how young learners can gain early exposure
and engage in rich computational experiences
in K-8. These experiences can build students’
computational thinking, understanding of CS
concepts, programming skills and confidence as
critical thinkers as well as provide experience with
collecting and analyzing data. We discuss how
three types of computational activities—digital
storytelling, data collection and analysis, and
computational science investigations—can be
used to incorporate computational thinking (CT)
across the curriculum.

In “Dancing with Robots” Frank Levy and Richard Murnane
[12] predict the future of work in America and what it will take
for the middle class to succeed. They looked into structural eco-
nomic changes brought about by technology and saw that in the
past three decades jobs requiring routine manual or routine cogni-
tive skills have disappeared from the labor market. Automation,
computer substitution and offshoring of human work has led to the
steady decline of work centered on routine cognitive and manual
tasks such as filing and assembly line work. Contemporaneously,
jobs which require solving unstructured problems, communication,

Irene Lee, Fred Martin
and Katie Apone

EARLY
COMPUTING
EDUCATION

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2684721.2684736&domain=pdf&date_stamp=2014-12-03

2014 December  •  Vol. 5  •  No. 4   acm Inroads   65

SPECIAL SECTION SPECIAL SECTIONSPECIAL SECTION

tional thinking (CT) is described
as a problem-solving process that
includes the following.

■ �Formulating problems in a way
that enables us to use a computer
and other tools to help solve
them.

■ �Logically organizing and analyz-
ing data.

■ �Representing data through
abstractions (such as models and
simulations).

■ �Automating solutions through
algorithmic thinking (a series of
ordered steps).

■ �Identifying, analyzing, and imple-
menting possible solutions with
the goal of achieving the most
efficient and effective combina-
tion of steps and resources.

■ �Generalizing and transferring this
problem solving process to a wide
variety of problems.

Of particular relevance in K-8 are the understandings that CT
is a way that humans think and that the ability to harness the pow-
er of computers can begin to be developed at a young age. Lee et
al [11] presented examples of CT for youth in practice across three
domains—modeling and simulation, robotics, and game design and
development—that demonstrated that youth in K-8 were not only
capable but also actively using computational thinking in out of
school time activities. In this article, the authors will extend these
examples to describe a set of activities and approaches that can be
used integrate CT across the regular school day in core courses.

APPROACHES TO DEVELOPING
YOUTHS’ COMPUTATIONAL THINKING
Here we present three approaches that guide the development of
youths’ computational thinking. Each approach entails making
shift in agency, tool use, and use of abstraction. Students progress
from completing challenges posed by others to taking an active role
as developers of their own designs and investigations that make
use of computational tools. They learn to use computational tools
and techniques in their fullness and apply the tool to solving new
problems that they pose for themselves, and they leverage their ex-
periences analyzing data that they produced before analyzing large
data sets amassed by others.

“Puzzles to Open Sandbox” Approach Used in
Digital Storytelling
In this approach, the learner takes the role of the apprentice and
learns various facets of expert knowledge in small independent tasks
or puzzles over a period of time. Only after all of the puzzles have
been mastered is the apprentice allowed open access to the full studio

or workbench (referred to as an “Open Sandbox” in creative comput-
ing communities) to create a project of the apprentice’s choosing.

Code.org’s K-5 curriculum [1] presents a series of activities to the
user as puzzles of increasing difficulty within each unit. The culmi-
nating activity in each unit involves creating a story or game using any
or all of the commands learned and a set of characters encountered in
earlier puzzles. In this progression, the learner gains experience with
simple commands while developing solutions to puzzles that were
developed by someone else. Eventually, the learner as creator of a sto-
ry or game poses problems that he/she will solve using computational
tools (Figure 1). This type of scaffolded activity can serve as an easy
on-ramp to creating artifacts in open sandbox environments with full
graphical editing capabilities such as Scratch [18].

Note that in this scenario the development of computational
thinking is not explicitly taught but rather evolves through one’s
impetus to create. Abstraction in the context of creating animat-
ed stories and games occurs when students create “costumes” or
“sprites“ as graphical representations of characters. Simple repre-
sentations are used to represent specific people or things. Cartoon-
ists take advantage of the brain’s propensity for abstraction. “The
more realistic a character appears, the more we think of them as
a different person, whereas when we see a more simplified face,
we see ourselves reflected in the character [15].” Furthermore, in
storytelling or designing a narrative to drive a game’s progression,
abstraction is used in partitioning the experience into segments
(chapters in stories, levels in games). Games are abstracted into a
set of scenes (or levels) containing characters. Early use of abstrac-
tion involves deciding on important scenes and characters to retain,
or drop, and how to get an idea across with a minimum set of
scenes and/or characters. The use of abstraction to simplify a story
or game to make it transferable to computational media, the use of
automation or the commands to drive the unfolding of the story or
behavior in the game, and the performance of simple analysis (“Do

Figure 1. “Create a story” activity in Code.org K-5 curriculum.

66   acm Inroads   2014 December  •  Vol. 5  •  No. 4

Integrating Computational Thinking Across the K-8 Curriculum

SPECIAL SECTION

the elements incorporated help get the idea across?” or “Is the game
fun to play?”) is in essence computational thinking in the creation
of digital stories.

Relevant standards addressed in this approach:
■ �CSTA & ISTE’s “Operational Definition of CT” [4] identifies key

practices as formulating problems in a way that enables us to use a
computer and other tools to help solve them, and automating solu-
tions through algorithmic thinking (a series of ordered steps).

■ �Computer Science Teachers Association’s K-12 Standards [19]
addressed —in the Computational Thinking strand—are: Use
the basic steps in algorithmic problem-solving to design solutions
(2-1); and Describe and analyze a sequence of instructions being
followed (2-6). In the Computing Practice and Programming
strand, the standards addressed are: Use a variety of multimedia
tools and peripherals to support personal productivity and learning
throughout the curriculum (2-2); Design, develop, publish and
present products using technology resources that demonstrate and
communicate curricular concepts (2-3); and Implement prob-
lem solutions using a programming language including: looping
behavior, conditional statements, logic, expressions, variables, and
functions (2-5).

Use-Modify-Create Progression Used in
Computational Science Investigations
In the article “Computational Thinking for Youth in Practice” Lee
et al. [11] described a three-stage progression for engaging youth
in CT within rich computational environments. This progression,
called Use-Modify-Create, describes a pattern of engagement
(see Diagram 1) that was seen—in various NSF-funded Innova-
tive Technology Experiences for Students and Teachers (ITEST)
projects—to support and deepen youths’ acquisition of CT. The
Use-Modify-Create progression is based on the premise that scaf-
folding increasingly deep interactions will promote the acquisition
and development of CT.

In the “use” stage, students are consumers of someone else’s
creation. For example, in the context of a computational science
investigation, students run experiments using pre-existing com-
puter models as experimental test beds. Over time they begin to
“modify” the model, with increasing levels of sophistication. For

example, a student may initially want to change the color of a
character or some other purely visual attribute. Later the student
may want to change the character’s behavior in a way that en-
tails developing new pieces of code. In this “modify” phase of
the progression, an understanding of at least a subset of the ab-
straction and automation contained within a model is necessary.
Through a series of modifications and iterative refinements, new
skills and understandings are developed as what was once some-
one else’s becomes one’s own. Furthermore, as youth gain skills
and confidence, they can be encouraged to develop ideas for new
computational projects of their own design that address issues of
their choosing. Within this “create” stage, all three key aspects of
computational thinking—abstraction, automation and analysis—
come into play.

Relevant standards addressed in this approach include:
■ �Standards related to modeling and simulation that appear in the

Computer Science Teachers Association’s K-12 Standards [19].
In the Computational Thinking strand, the standards addressed
include: Interact with content-specific models and simulations
to support learning and research (2-9); Evaluate the kinds of
problems that can be solved using modeling and simulation
(2-10); Analyze the degree to which a computer model accu-
rately represents the real world (2-11); and Use modeling and
simulation to represent and understand natural phenomena
(3A-8). In the Computing Practice and Programming strand, the
standards addressed include: Implement a problem solution in a
programming environment using looping behavior, conditional
statements, logic, expressions, variables and functions (2-5); and
Collect and analyze data that are output from multiple runs of a
computer program (2-9).

■ �Scientific and Engineering Practices in Achieve’s Next Generation
Science Standards (NGSS) [16] that include: Developing and us-
ing models (Practice #2); Planning and carrying out investigations
(Practice #3); Analyzing and interpreting data (Practice #4); Using
Mathematical and computational thinking (Practice #5); and Con-
structing explanations and designing solutions (Practice #6).

Transference of modeling and simulation as a problem-solving
tool was seen in a small pilot study [10]. When asked to help their
teacher study a community problem, 80% of students previously
exposed to modeling and simulation in an afterschool club context
suggested constructing a model of the scenario and its use as an
experimental test bed to investigate and potentially solve a new
community problem. It is important to note that the respondent
group consisted of students in low-, mid- and high- participation
rate groups—in other words, applying modeling and simulation to
investigate and potentially solve local issues was a “sticky” concept.
Furthermore, 50% of the student respondents could elaborate on
the abstractions and automations required in the model they had
in mind as an experimental test bed. This application of a compu-
tational tool to a new problem and formulation, or identification,
of new problems that can be understood or investigated using com-
puter modeling and simulation is clear evidence of computational
thinking in K-8.

Diagram 1: Use-Modify-Create Learning Progression, from Lee et al. 2011

2014 December  •  Vol. 5  •  No. 4   acm Inroads   67

SPECIAL SECTION SPECIAL SECTION

words, they need to shift from end-users to creators and innovators
capable of using computational tools and techniques to make new
tools or artifacts. This shift in agency can be instigated through
project-based assignments in which students are given more au-
tonomy in selecting the topic and deciding on the scope of their

project. Another shift occurs in the set of
tools used or capabilities of a tool used.
In the storytelling scenario, we described
using one environment, Code.org’s K-5
online curriculum, for the puzzle based
learning progression, followed by anoth-
er, Scratch, for motivating student-driven
projects with unique graphical represen-
tations. Progressively making new com-
mands available over time within a single
tool or environment was pioneered long
ago by environments such as DrJava [5].
Finally, we see a shift in the use of ab-
straction across these three approaches.
In the first approach, “puzzles to open

sandbox,” students start with abstractions in visual representa-
tion and progress to partitioning the storyline into segments. In
the second approach, “Use-Modify-Create,” they use abstraction
when they select components and represent processes from the
real-world in a computer model. In the third approach, “Data gen-
eration to data analysis,” they use abstraction when representing
real-world elements as dots on maps, or data points in graphs and
charts, then use mathematical abstraction as they describe a set us-
ing statistical characteristics.

INTEGRATING COMPUTATIONAL
THINKING ACROSS K-8
Three genres of computational activities (digital stories, com-
puter models and simulations, and data explorations) can be used
to incorporate CT across the K-8 curriculum. In this section, we
present three examples of work with middle school learners: (1)
using Scratch for digital storytelling in language arts and history
classes; (2) using StarLogo for computational science investiga-
tions in the context of science classes; and (3) using iSENSE for
data collection and analysis for learning about time, rate, and
distance.

Digital Storytelling
Scratch [18] has been used by students to create animated stories
and reports to fulfill class assignments in various subject areas in
K-8. The example below shows how a student used Scratch to
create a digital book report on E. B. White’s story “Charlotte’s
Web” [14]. In this retelling of the story, three main scenes were
retained and the story progresses through the dialog of the key
characters. The author remarks in the notes and credits window
“This is for a book report for school. I slightly changed the story
to keep the main points but make the extent of the video not too
long. I made some minor spelling changes because my teacher
asked me to.”

From Data Generation to Data Analysis
Progression Used in Data Explorations
There are deep connections between CT and data, and, con-
sequently, an important dimension of computational think-
ing involves students’ work with data. In this third approach,
learners gain first-hand knowledge with
data due to their role in generating it.
A strong connection can be forged be-
tween a real-world experience and the
resulting data set. Ultimately, patterns
in time and space can be understood
in different frameworks—e.g., as a
personal or socially shared memory, as
captured data sets, as visualizations, and
as characterized by statistics. Student
data explorations can progress from (1)
generating data or collecting data fol-
lowing activity-based instructions; to
(2) organizing and analyzing data; and
finally, to (3) posing unique questions
and seeking appropriate data sets to analyze in seeking an answer
to the question. Having a personal relationship with the data
prior to working with other’s data potentially engenders deeper
understanding of plotted data, and possibly greater engagement
with one’s own data.

Relevant standards documents refer not only to computational
representations of data—e.g., bits and bytes—but the more
expansive processes of gathering, representing, and using data.

■ �The Computer Science Teachers Association’s K-12 standards dis-
cuss data in both the computational thinking (CT) and computing
practice and programming (CPP) strands [19]. Specific standards
include using digital tools to gather and manipulate data (CSTA
CPP 1:6-10); exploring ways that data may represent text, sounds,
pictures, and numbers (CSTA CT 2-7); using visual representa-
tions (CSTA CT 2-8); and analyzing data from multiple runs of a
program or simulation (CSTA CPP 2-9).

■ �The International Society for Technology Education also dis-
cusses data in its computational thinking standards. The 2011
“Operational Definition of CT” identifies key practices with data,
including “logically organizing and analyzing data” and “repre-
senting data through abstractions [4].” In the 2014 Standards for
Computer Science Educators [9], the topic of data is discussed in
the Knowledge of Content section, stating that learners should “ef-
fectively use, manipulate, and explain various external data stores:
various types (text, images, sound, etc.), various locations (local,
server, cloud), etc.”

■ �In the high school realm, the College Board’s CS Principles Big
Idea #3 broadly recognizes that “data and information facilitate the
creation of knowledge [3].”

Shifts Required in Computational Thinking
On the way to “applying computational tools and techniques to
express themselves creatively or solve problems” student must learn
to see themselves as capable of coming up with solutions. In other

Students need to shift
from end-users to

creators and innovators
capable of using

computational tools
and techniques

to make new tools
or artifacts.

68   acm Inroads   2014 December  •  Vol. 5  •  No. 4

Integrating Computational Thinking Across the K-8 Curriculum

SPECIAL SECTION

“Why Government? Short animation for my History class” is
another example of a class assignment shared by a student [6]. The
author remarked “Made this for my history class @ school thanks to
Mr. H for letting me use SCRATCH!” In this example, loops and
event handling were used to advance the narrative over a sound track.

In these examples, students used abstraction to simplify a story
and make it portable to computational media. They used automa-
tion when assembling the commands that drive the unfolding of
the story and they performed simple analysis when determining
whether the elements they incorporated make the story interest-
ing and/or informative to others. The combination of ownership,
agency and accomplishment is evident in these projects.

Computational Science Investigations
Mathematical and scientific concepts are better suited for investi-
gation using computer models and simulations than illustrated us-
ing animated stories. Agent-based modeling environments, specif-

ically StarLogo TNG [20] and StarLogo Nova
[21] have been used with 6-8th grade students
in science classes to delve deeply into science
concepts through modeling and simulation. In
the context of a life science unit on ecosystems,
the Use-Modify-Create progression provides a
scaffolded approach to engage students in CT
within modeling and simulation environments.
After an initial description of the model is pre-
sented to the student, the progression can guide
the student to deeper levels of understanding of
the model and the phenomena being modeled.
For example, given a simple ecosystem model,
the student viewing the underlying code sees
that the world is made up of fish and plankton
that move through the pond with a little bit of
randomness in their motion. Fish lose energy
when they move. When a fish encounters a

plankton, the plankton gets eaten and the fish gains energy. When
the fish’s energy has reached a threshold, it gives birth to a new fish
and gives the new fish some of its energy.

In the “use” stage, students run experiments on this pre-built
computer model. In this example, students are asked to find an

initial number of fish that leads to a pond eco-
system where both fish and plankton can persist
over time. By changing initial number of fish
through a user interface widget and running
repeated experiments, students might discover
that there are three possible outcomes: fish die
out but the plankton survive; plankton get all
eaten then the fish die out; and that the popula-
tions in the ecosystem persist in dynamic equi-
librium. (See Figure 4.)

Over time, students ask questions and modify
the model with increasing levels of sophistica-
tion. For example, students initially want to see
if changing the color of the plankton impacts
the system’s behavior. Later the students add a
predator and see its impact on the simple ecosys-
tem (Figure 4). This addition entails using CT
when developing a new agent and algorithms for
its behavior. Subsequent experiments uncover a
new pattern in the system, with the addition of

a top predator, sometimes the fish population never grows above a
certain threshold and the cycles of population booms and busts cease
to exist. In this way, through a series of modifications and iterative
refinements, new skills and new scientific understandings are devel-
oped as what was once someone else’s model becomes one’s own.
A Project GUTS ecosystem unit incorporating this activity has
been implemented and used successfully with diverse populations of
middle school students both in the context of afterschool clubs and
within regular school day mandatory classes over the past five years.

Recently, a set of StarLogo Nova modeling and simulation
modules have also been developed by Project GUTS [17] for used
in Earth, Life, and Physical Science contexts [2].

Figure 3. Screen capture from “Why Government? Short animation for my History class” in the
Scratch environment.

Figure 2. Screen capture from “Charlotte’s Web” project in Scratch.

2014 December  •  Vol. 5  •  No. 4   acm Inroads   69

SPECIAL SECTION SPECIAL SECTION

the dots grow, introducing them to velocity and acceleration. In the
Human Tickertape version, students carry a mobile device running
the iSENSE data walk app. It’s an outdoor activity, and, as students
go on a walk (or run), the data walk app records their position and
velocity. Afterward, the data are uploaded to iSENSE, and stu-
dents view themselves and each other on a map, and interpret their
data using other visualizations.

Figure 5 shows an example of the resulting data. The data sets
are from students of a middle school science teacher who carried
out the activity using the tennis courts behind her school. Stu-
dents were organized in teams and given directions for collecting a
30-second sample of data—e.g., walk slowly for 30 seconds or run
for 30 seconds. The maps show data from two teams of students,

Computational Thinking with Data
iSENSE [8] is a set of web-based and mobile tools that enables
sharing, collaboration, and visualization of real-world data sets
[13]. At the iSENSE web site, teachers (and students) can author
“projects,” which are structured repositories of data, usually for a
specific investigation or purpose. Then students can contribute in-
dividual data sets (each of which may contain single or multiple
rows of data). Once data sets are present, students and teachers can
select them and visualize them, using a variety of tools, including a
map view, time series view, and summarizing bar chart view.

Data for analysis on iSENSE may come from a variety of sourc-
es. Users may directly type data into a web page, or upload tabular
data in Excel or CSV form. Data saved from classroom experi-
ments using probeware may be uploaded. Also, data sets
published on the web may be downloaded and then up-
loaded to iSENSE for sharing and visualization. Custom
mobile apps are available that use a device’s sensors—its
GPS and accelerometer—to record data and directly up-
load it to iSENSE. One of these apps is the Data Walk,
which is available for Android devices. This app records
the user’s position, velocity, and instantaneous accelera-
tion at an adjustable rate (e.g. every second, or every 10
seconds). After a short period of data capture, the data
set is uploaded to the iSENSE web site for inspection
and sharing [7].

In collaboration with two Boston-area teachers (one
high school teacher and one middle school teacher),
the iSENSE team developed a classroom unit called
the “Human Tickertape.” The activity is modeled after
earlier paper tape experiments created by physics teach-
ers, in which an apparatus marks a paper tape at regular
timed intervals. As the paper tape is unfurled (e.g. by an
accelerating mass), students can see the distance between Figure 5. Map visualization of six students’ data from Human Tickertape activity.

Figure 4. StarLogo TNG ecosystem simulation with and without predator.

70   acm Inroads   2014 December  •  Vol. 5  •  No. 4

Integrating Computational Thinking Across the K-8 Curriculum

SPECIAL SECTION

each with three participants. The teams did their work
simultaneously, but in different parts of the school’s ten-
nis courts. When the students viewed their data, they saw
that the group using the upper-left portion of the tennis
courts (farther from the school) was running, while the
other group of students walked. In the upper group, the
distance between the map markers is larger, indicating
that the three students in this group were moving faster.
Students were able to use their own body memory of per-
forming the activity while interpreting the visualization.

Then students explored other views of the same data.
For instance, the timeline view shows the six data walks
using a velocity-vs.-time graph (Figure 6). Students were
able to see that three of them were walking (reaching a
maximum velocity between 1 and 2 meters per second)
while the other three were running (reaching about 3.5
meters per second). The three data sets from the “run-
ning group” show the quick acceleration to running speed
terminated by a hard stop. The three data sets from the
“walking group” show an approximately constant speed
for the recording period.

Figure 7 presents yet another view of the same data,
summarizing each student’s walk as a single bar chart
of average velocity. This example in iSENSE highlights
several important computational thinking practices with
data. Students are using computational tools to “gather
and manipulate data,” “use visual representations,” and
analyze “multiple runs” of data. Furthermore, because
the iSENSE system puts all of the students’ data into
the same project container, it allows them to share and
compare data in a facile way that’s afforded specifically
by the computational medium. It’s also worth reflecting
upon the idea of abstraction as it exists in these data ex-
plorations. Typically we discuss abstraction in the context
of programming—for example, procedural abstraction or
object-oriented abstraction. In this fashion, abstraction
is about hiding information, yet simultaneously revealing
the essentials of the matter.

In the progression of iSENSE visualizations, we can
also see this principle in action. The map view abstracted
the students’ real world motion to set of points on the
map, showing students where they were, and also rep-
resenting velocity as the interval between the locations.
The velocity timeline abstracted away the position infor-
mation, but highlighted the acceleration and deceleration in each
student’s walk. The velocity bar graph collapsed the timeline into a
single point of information—but more easily allowed comparisons
among students’ walks. While this example came from a science
class, these approaches are also valuable in mathematics. Teachers
working with iSENSE have used it in math classes to help stu-
dents understand probability (e.g., having many students contrib-
ute dice rolls or other data from other random events to a project,
and learning about the role of a large sample size) and proportional
reasoning (e.g., comparing the length of one’s forearm and tibia for
people of different heights).

CONCLUSION
Based on our experiences with youth learning CT, we offer con-
crete examples of activities that integrate into regular school day
classes in K-8 to support the development of computational think-
ing. The tools and approaches presented in this article can be used
in conjunction with project work across a variety of content areas.
While implementing CT across the curriculum during the regular
school day is a compelling vision, there remain substantial chal-
lenges to its implementation in some schools. These barriers in-
clude lack of space in the existing curriculum for computationally
rich project work, lack of opportunities for teachers to learn CT as

Figure 6. Timeline visualization of students’ data walks, showing velocity vs. time.
Some of the data are overlaid because students were simultaneously recording their
walks on two different devices; the graph shows all of their data together, regardless
of which device initially recorded it.

Figure 7. The six data walks, presented as bar graphs of average velocity per walk. The
data sets are color coded to match across the visualization tools.

2014 December  •  Vol. 5  •  No. 4   acm Inroads   71

SPECIAL SECTION SPECIAL SECTION

	[12]	� Levy, F., and Murnane, R. “Dancing with Robots: Human Skills for Computerized Work;”
http://www.thirdway.org/publications/714. Accessed 2014 July 30.

	[13]	� Martin, F., et al. “iSENSE: A Web Environment and Hardware Platform for Data Sharing and
Citizen Science.” Presented at the Association for the Advancement of Artificial Intelligence
2010 Spring Symposium. (Stanford, CA, 2010).

	[14]	� Masterock. “Charlotte’s Web.” (Scratch project); http://scratch.mit.edu/projects/112192/.
Accessed 2014 July 30.

	[15]	� McCloud, S. Understanding Comics: [The Invisible Art]. (New York: HarperPerennial, 1994).
	[16]	� NGSS Lead States. Next Generation Science Standards: For states, by states. (Washington,

DC: National Academies Press. 2013).
	[17]	� Project GUTS website; http://projectguts.org. Accessed 2014 July 30.
	[18]	� Scratch website; http://scratch.mit.edu. Accessed 2014 July 30.
	[19]	� Seehorn D., et al. CSTA K-12 Computer Science Standards. (New York: ACM publications,

2011).
	[20]	� StarLogo Nova website; http://slnova.org. Accessed 2014 July 30.
	[21]	� StarLogo TNG website; http://education.mit.edu/projects/starlogo-tng. Accessed 2014 July

30.
	[22]	� Wing, J. M. “Computational Thinking,” Communications of the ACM, 49, 3 (2006): 33-35.

IRENE LEE
Santa Fe Institute, 1399 Hyde Park Road,
Santa Fe, New Mexico 87505 USA

lee@santafe.edu

FRED MARTIN
University of Massachusetts Lowell, 1 University Avenue,
Lowell, Massachusetts 01854 USA

fredm@cs.uml.edu

KATIE APONE
Code.org, 1301 5th Avenue, Suite 1225,
Seattle, Washington 98101 USA

katie@code.org

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and
Information Science Education – Computer science education, curricula, literacy.
General Terms: Human Factors, Performance, Design, Experimentation.
Keywords: Computer science education, computational thinking, abstraction, automation, analysis.

DOI: 10.1145/2684721.2684736� © 2014 ACM 2153-2184/14/12 $15.00

part of their professional development, and lack of access to nec-
essary infrastructure. Nonetheless, there are other teachers who
are currently, or may become, well positioned to integrate CT in
their classrooms. It is our hope that by describing some feasible ap-
proaches, these teachers, and potentially many others, may benefit
from these practical approaches to embedding CT in K-8 that are
both grounded in experience and linked to relevant standards. Ir

ACKNOWLEDGMENTS
Co-author Martin wishes to thank public school teachers Steve Cogger and Barbara Keating for
their work on the Human Tickertape activity. iSENSE Project material is based upon work supported
by the National Science Foundation under grant numbers IIS-1123972 and IIS-1123998. Co-author
Lee wishes to thank Project GUTS club leaders and facilitators for their dedication to bringing
computational science experiences to middle school students, and the MIT StarLogo Development
Group for their ongoing support and partnership. The modeling and simulation material presented
in this article is based upon work supported by the National Science Foundation under grant
numbers DRL-0639637 and DRL-1031421.

REFERENCES
	 [1]	� Code.org K-5 Curriculum; http://learn.code.org/s/course1; http://learn.code.org/s/course2;

http://learn.code.org/s/course3. Accessed 2014 July 30.
	 [2]	� Code.org / Project GUTS Middle School Computer Science in Science Curriculum; http://code.

org/curriculum/mss. Accessed 2014 July 30.
	 [3]	� College Board. AP Computer Science: Principles Course Annotations. 2010; http://www.

collegeboard.com/prod_downloads/computerscience/1_2010_AP_CS_Principles_Annota-
tions_0929.pdf. Accessed 2014 July 30.

	 [4]	� CSTA & ISTE. Operational Definition of Computational Thinking for K–12 Education. 2011;
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.
pdf. Accessed 2014 July 30.

	 [5]	� DrJava. www.drjava.org; Accessed 2014 July 30.
	 [6]	� grandvillegamers. “Why Government? Short animation for my History class;” http://scratch.

mit.edu/projects/12171399/. Accessed 2014 July 30.
	 [7]	� iSENSE Data Walk mobile application; https://play.google.com/store/apps/details?id=edu.

uml.cs.isense.datawalk_v2 . Accessed 2014 July 30.
	 [8]	� iSENSE project website; http://isenseproject.org. Accessed 2014 July 30.
	 [9]	� ISTE Standards for Computer Science Educators. 2014; http://www.iste.org/docs/pdfs/2014_

ISTE_Standards-CSE_PDF.pdf. Accessed 2014 July 30.
	[10]	� Lee, I. “Assessing Youth’s Computational Thinking in the context of Modeling & Simulation.”

Presented at American Educational Research Associates (AERA) Conference Proceedings.
(New Orleans, Louisiana, 2011).

	[11]	� Lee, I., et al. “Computational Thinking for Youth in Practice.” ACM Inroads, 2, 1(2011): 32-37.

ACM Transactions on
Interactive Intelligent
Systems (TIIS). This
quarterly journal
publishes papers on
research encompassing
the design, realization,
or evaluation of
interactive systems
incorporating some form
of machine intelligence.

ACM Transactions on
Interactive Intelligent Systems

World-Renowned Journals from ACM
ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas

of the computing field. IT professionals worldwide depend on ACM’s publications to keep them abreast
of the latest technological developments and industry news in a timely, comprehensive manner of the highest

quality and integrity. For a complete listing of ACM’s leading magazines & journals, including our renowned
Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Office
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on
Computation Theory
(ToCT). This quarterly
peer-reviewed journal
has an emphasis
on computational
complexity, foundations
of cryptography and
other computation-based
topics in theoretical
computer science.

ACM Transactions on
Computation Theory

w w w . a c m . o r g / p u b s

