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and non-routine manual work have grown as a proportion of the 
labor market. Under these circumstances, young people’s prepara-
tion for the workforce must adapt. Two types of tasks that rely 
on uniquely human abilities are (1) the ability to integrate many 
kinds of information to solve unstructured problems and (2) ac-
quiring, making sense of, and communicating information to oth-
ers. Computational thinking is a key skill in the realm of solving 
unstructured problems, understanding and interpreting data, and 
communicating information to others using computers. This paper 
aims to help K-8 educators and the public at large understand how 
computational thinking can be integrated within existing curricu-
lum through three genres of computing activities.

COMPUTATIONAL THINKING
Computational thinking (CT) is a term coined by Jeannette Wing 
[22] to describe a set of thinking skills, habits and approaches 
that are integral to solving complex problems using a computer 
and widely applicable in the information society. Thinking com-
putationally draws on the concepts that are fundamental to com-
puter science, and involves systematically and efficiently process-
ing information and tasks. CT involves defining, understanding, 
and solving problems, reasoning at multiple levels of abstraction, 
understanding and applying automation, and analyzing the appro-
priateness of the abstractions made.

The International Society for Technology in Education (ISTE) 
and the Computer Science Teacher Association (CSTA) col-
laborated with leaders from higher education, industry and K-12 
education to develop an operational definition of computational 
thinking that provides a framework and vocabulary that resonates 
with K-12 educators [4]. In the operational definition, computa-
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jobs which require solving unstructured problems, communication, 

Irene Lee, Fred Martin 
and Katie Apone

EARLY
COMPUTING 
EDUCATION

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2684721.2684736&domain=pdf&date_stamp=2014-12-03


2014 December  •  Vol. 5  •  No. 4    acm Inroads    65

SPECIAL SECTION SPECIAL SECTIONSPECIAL SECTION

tional thinking (CT) is described 
as a problem-solving process that 
includes the following.

■ �Formulating problems in a way 
that enables us to use a computer 
and other tools to help solve 
them.

■ �Logically organizing and analyz-
ing data.

■ �Representing data through 
abstractions (such as models and 
simulations).

■ �Automating solutions through 
algorithmic thinking (a series of 
ordered steps).

■ �Identifying, analyzing, and imple-
menting possible solutions with 
the goal of achieving the most 
efficient and effective combina-
tion of steps and resources.

■ �Generalizing and transferring this 
problem solving process to a wide 
variety of problems.

Of particular relevance in K-8 are the understandings that CT 
is a way that humans think and that the ability to harness the pow-
er of computers can begin to be developed at a young age. Lee et 
al [11] presented examples of CT for youth in practice across three 
domains—modeling and simulation, robotics, and game design and 
development—that demonstrated that youth in K-8 were not only 
capable but also actively using computational thinking in out of 
school time activities. In this article, the authors will extend these 
examples to describe a set of activities and approaches that can be 
used integrate CT across the regular school day in core courses.

APPROACHES TO DEVELOPING 
YOUTHS’ COMPUTATIONAL THINKING
Here we present three approaches that guide the development of 
youths’ computational thinking. Each approach entails making 
shift in agency, tool use, and use of abstraction. Students progress 
from completing challenges posed by others to taking an active role 
as developers of their own designs and investigations that make 
use of computational tools. They learn to use computational tools 
and techniques in their fullness and apply the tool to solving new 
problems that they pose for themselves, and they leverage their ex-
periences analyzing data that they produced before analyzing large 
data sets amassed by others.

“Puzzles to Open Sandbox” Approach Used in 
Digital Storytelling
In this approach, the learner takes the role of the apprentice and 
learns various facets of expert knowledge in small independent tasks 
or puzzles over a period of time. Only after all of the puzzles have 
been mastered is the apprentice allowed open access to the full studio 

or workbench (referred to as an “Open Sandbox” in creative comput-
ing communities) to create a project of the apprentice’s choosing.

Code.org’s K-5 curriculum [1] presents a series of activities to the 
user as puzzles of increasing difficulty within each unit. The culmi-
nating activity in each unit involves creating a story or game using any 
or all of the commands learned and a set of characters encountered in 
earlier puzzles. In this progression, the learner gains experience with 
simple commands while developing solutions to puzzles that were 
developed by someone else. Eventually, the learner as creator of a sto-
ry or game poses problems that he/she will solve using computational 
tools (Figure 1). This type of scaffolded activity can serve as an easy 
on-ramp to creating artifacts in open sandbox environments with full 
graphical editing capabilities such as Scratch [18].

Note that in this scenario the development of computational 
thinking is not explicitly taught but rather evolves through one’s 
impetus to create. Abstraction in the context of creating animat-
ed stories and games occurs when students create “costumes” or 
“sprites“ as graphical representations of characters. Simple repre-
sentations are used to represent specific people or things. Cartoon-
ists take advantage of the brain’s propensity for abstraction. “The 
more realistic a character appears, the more we think of them as 
a different person, whereas when we see a more simplified face, 
we see ourselves reflected in the character [15].” Furthermore, in 
storytelling or designing a narrative to drive a game’s progression, 
abstraction is used in partitioning the experience into segments 
(chapters in stories, levels in games). Games are abstracted into a 
set of scenes (or levels) containing characters. Early use of abstrac-
tion involves deciding on important scenes and characters to retain, 
or drop, and how to get an idea across with a minimum set of 
scenes and/or characters. The use of abstraction to simplify a story 
or game to make it transferable to computational media, the use of 
automation or the commands to drive the unfolding of the story or 
behavior in the game, and the performance of simple analysis (“Do 

Figure 1. “Create a story” activity in Code.org K-5 curriculum.
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the elements incorporated help get the idea across?” or “Is the game 
fun to play?”) is in essence computational thinking in the creation 
of digital stories.

Relevant standards addressed in this approach:
■ �CSTA & ISTE’s “Operational Definition of CT” [4] identifies key 

practices as formulating problems in a way that enables us to use a 
computer and other tools to help solve them, and automating solu-
tions through algorithmic thinking (a series of ordered steps).

■ �Computer Science Teachers Association’s K-12 Standards [19] 
addressed —in the Computational Thinking strand—are: Use 
the basic steps in algorithmic problem-solving to design solutions 
(2-1); and Describe and analyze a sequence of instructions being 
followed (2-6). In the Computing Practice and Programming 
strand, the standards addressed are: Use a variety of multimedia 
tools and peripherals to support personal productivity and learning 
throughout the curriculum (2-2); Design, develop, publish and 
present products using technology resources that demonstrate and 
communicate curricular concepts (2-3); and Implement prob-
lem solutions using a programming language including: looping 
behavior, conditional statements, logic, expressions, variables, and 
functions (2-5).

Use-Modify-Create Progression Used in 
Computational Science Investigations
In the article “Computational Thinking for Youth in Practice” Lee 
et al. [11] described a three-stage progression for engaging youth 
in CT within rich computational environments. This progression, 
called Use-Modify-Create, describes a pattern of engagement 
(see Diagram 1) that was seen—in various NSF-funded Innova-
tive Technology Experiences for Students and Teachers (ITEST) 
projects—to support and deepen youths’ acquisition of CT. The 
Use-Modify-Create progression is based on the premise that scaf-
folding increasingly deep interactions will promote the acquisition 
and development of CT.

In the “use” stage, students are consumers of someone else’s 
creation. For example, in the context of a computational science 
investigation, students run experiments using pre-existing com-
puter models as experimental test beds. Over time they begin to 
“modify” the model, with increasing levels of sophistication. For 

example, a student may initially want to change the color of a 
character or some other purely visual attribute. Later the student 
may want to change the character’s behavior in a way that en-
tails developing new pieces of code. In this “modify” phase of 
the progression, an understanding of at least a subset of the ab-
straction and automation contained within a model is necessary. 
Through a series of modifications and iterative refinements, new 
skills and understandings are developed as what was once some-
one else’s becomes one’s own. Furthermore, as youth gain skills 
and confidence, they can be encouraged to develop ideas for new 
computational projects of their own design that address issues of 
their choosing. Within this “create” stage, all three key aspects of 
computational thinking—abstraction, automation and analysis—
come into play.

Relevant standards addressed in this approach include:
■ �Standards related to modeling and simulation that appear in the 

Computer Science Teachers Association’s K-12 Standards [19]. 
In the Computational Thinking strand, the standards addressed 
include: Interact with content-specific models and simulations 
to support learning and research (2-9); Evaluate the kinds of 
problems that can be solved using modeling and simulation 
(2-10); Analyze the degree to which a computer model accu-
rately represents the real world (2-11); and Use modeling and 
simulation to represent and understand natural phenomena 
(3A-8). In the Computing Practice and Programming strand, the 
standards addressed include: Implement a problem solution in a 
programming environment using looping behavior, conditional 
statements, logic, expressions, variables and functions (2-5); and 
Collect and analyze data that are output from multiple runs of a 
computer program (2-9).

■ �Scientific and Engineering Practices in Achieve’s Next Generation 
Science Standards (NGSS) [16] that include: Developing and us-
ing models (Practice #2); Planning and carrying out investigations 
(Practice #3); Analyzing and interpreting data (Practice #4); Using 
Mathematical and computational thinking (Practice #5); and Con-
structing explanations and designing solutions (Practice #6).

Transference of modeling and simulation as a problem-solving 
tool was seen in a small pilot study [10]. When asked to help their 
teacher study a community problem, 80% of students previously 
exposed to modeling and simulation in an afterschool club context 
suggested constructing a model of the scenario and its use as an 
experimental test bed to investigate and potentially solve a new 
community problem. It is important to note that the respondent 
group consisted of students in low-, mid- and high- participation 
rate groups—in other words, applying modeling and simulation to 
investigate and potentially solve local issues was a “sticky” concept. 
Furthermore, 50% of the student respondents could elaborate on 
the abstractions and automations required in the model they had 
in mind as an experimental test bed. This application of a compu-
tational tool to a new problem and formulation, or identification, 
of new problems that can be understood or investigated using com-
puter modeling and simulation is clear evidence of computational 
thinking in K-8.

Diagram 1: Use-Modify-Create Learning Progression, from Lee et al. 2011
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words, they need to shift from end-users to creators and innovators 
capable of using computational tools and techniques to make new 
tools or artifacts. This shift in agency can be instigated through 
project-based assignments in which students are given more au-
tonomy in selecting the topic and deciding on the scope of their 

project. Another shift occurs in the set of 
tools used or capabilities of a tool used. 
In the storytelling scenario, we described 
using one environment, Code.org’s K-5 
online curriculum, for the puzzle based 
learning progression, followed by anoth-
er, Scratch, for motivating student-driven 
projects with unique graphical represen-
tations. Progressively making new com-
mands available over time within a single 
tool or environment was pioneered long 
ago by environments such as DrJava [5]. 
Finally, we see a shift in the use of ab-
straction across these three approaches. 
In the first approach, “puzzles to open 

sandbox,” students start with abstractions in visual representa-
tion and progress to partitioning the storyline into segments. In 
the second approach, “Use-Modify-Create,” they use abstraction 
when they select components and represent processes from the 
real-world in a computer model. In the third approach, “Data gen-
eration to data analysis,” they use abstraction when representing 
real-world elements as dots on maps, or data points in graphs and 
charts, then use mathematical abstraction as they describe a set us-
ing statistical characteristics.

INTEGRATING COMPUTATIONAL 
THINKING ACROSS K-8
Three genres of computational activities (digital stories, com-
puter models and simulations, and data explorations) can be used 
to incorporate CT across the K-8 curriculum. In this section, we 
present three examples of work with middle school learners: (1) 
using Scratch for digital storytelling in language arts and history 
classes; (2) using StarLogo for computational science investiga-
tions in the context of science classes; and (3) using iSENSE for 
data collection and analysis for learning about time, rate, and 
distance.

Digital Storytelling
Scratch [18] has been used by students to create animated stories 
and reports to fulfill class assignments in various subject areas in 
K-8. The example below shows how a student used Scratch to 
create a digital book report on E. B. White’s story “Charlotte’s 
Web” [14]. In this retelling of the story, three main scenes were 
retained and the story progresses through the dialog of the key 
characters. The author remarks in the notes and credits window 
“This is for a book report for school. I slightly changed the story 
to keep the main points but make the extent of the video not too 
long. I made some minor spelling changes because my teacher 
asked me to.”

From Data Generation to Data Analysis 
Progression Used in Data Explorations
There are deep connections between CT and data, and, con-
sequently, an important dimension of computational think-
ing involves students’ work with data. In this third approach, 
learners gain first-hand knowledge with 
data due to their role in generating it. 
A strong connection can be forged be-
tween a real-world experience and the 
resulting data set. Ultimately, patterns 
in time and space can be understood 
in different frameworks—e.g., as a 
personal or socially shared memory, as 
captured data sets, as visualizations, and 
as characterized by statistics. Student 
data explorations can progress from (1) 
generating data or collecting data fol-
lowing activity-based instructions; to 
(2) organizing and analyzing data; and 
finally, to (3) posing unique questions 
and seeking appropriate data sets to analyze in seeking an answer 
to the question. Having a personal relationship with the data 
prior to working with other’s data potentially engenders deeper 
understanding of plotted data, and possibly greater engagement 
with one’s own data.

Relevant standards documents refer not only to computational 
representations of data—e.g., bits and bytes—but the more 
expansive processes of gathering, representing, and using data.

■ �The Computer Science Teachers Association’s K-12 standards dis-
cuss data in both the computational thinking (CT) and computing 
practice and programming (CPP) strands [19]. Specific standards 
include using digital tools to gather and manipulate data (CSTA 
CPP 1:6-10); exploring ways that data may represent text, sounds, 
pictures, and numbers (CSTA CT 2-7); using visual representa-
tions (CSTA CT 2-8); and analyzing data from multiple runs of a 
program or simulation (CSTA CPP 2-9).

■ �The International Society for Technology Education also dis-
cusses data in its computational thinking standards. The 2011 
“Operational Definition of CT” identifies key practices with data, 
including “logically organizing and analyzing data” and “repre-
senting data through abstractions [4].” In the 2014 Standards for 
Computer Science Educators [9], the topic of data is discussed in 
the Knowledge of Content section, stating that learners should “ef-
fectively use, manipulate, and explain various external data stores: 
various types (text, images, sound, etc.), various locations (local, 
server, cloud), etc.”

■ �In the high school realm, the College Board’s CS Principles Big 
Idea #3 broadly recognizes that “data and information facilitate the 
creation of knowledge [3].”

Shifts Required in Computational Thinking
On the way to “applying computational tools and techniques to 
express themselves creatively or solve problems” student must learn 
to see themselves as capable of coming up with solutions. In other 

Students need to shift  
from end-users to  

creators and innovators  
capable of using  

computational tools  
and techniques  

to make new tools  
or artifacts.
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“Why Government? Short animation for my History class” is 
another example of a class assignment shared by a student [6]. The 
author remarked “Made this for my history class @ school thanks to 
Mr. H for letting me use SCRATCH!” In this example, loops and 
event handling were used to advance the narrative over a sound track.

In these examples, students used abstraction to simplify a story 
and make it portable to computational media. They used automa-
tion when assembling the commands that drive the unfolding of 
the story and they performed simple analysis when determining 
whether the elements they incorporated make the story interest-
ing and/or informative to others. The combination of ownership, 
agency and accomplishment is evident in these projects.

Computational Science Investigations
Mathematical and scientific concepts are better suited for investi-
gation using computer models and simulations than illustrated us-
ing animated stories. Agent-based modeling environments, specif-

ically StarLogo TNG [20] and StarLogo Nova 
[21] have been used with 6-8th grade students 
in science classes to delve deeply into science 
concepts through modeling and simulation. In 
the context of a life science unit on ecosystems, 
the Use-Modify-Create progression provides a 
scaffolded approach to engage students in CT 
within modeling and simulation environments. 
After an initial description of the model is pre-
sented to the student, the progression can guide 
the student to deeper levels of understanding of 
the model and the phenomena being modeled. 
For example, given a simple ecosystem model, 
the student viewing the underlying code sees 
that the world is made up of fish and plankton 
that move through the pond with a little bit of 
randomness in their motion. Fish lose energy 
when they move. When a fish encounters a 

plankton, the plankton gets eaten and the fish gains energy. When 
the fish’s energy has reached a threshold, it gives birth to a new fish 
and gives the new fish some of its energy.

In the “use” stage, students run experiments on this pre-built 
computer model. In this example, students are asked to find an 

initial number of fish that leads to a pond eco-
system where both fish and plankton can persist 
over time. By changing initial number of fish 
through a user interface widget and running 
repeated experiments, students might discover 
that there are three possible outcomes: fish die 
out but the plankton survive; plankton get all 
eaten then the fish die out; and that the popula-
tions in the ecosystem persist in dynamic equi-
librium. (See Figure 4.)

Over time, students ask questions and modify 
the model with increasing levels of sophistica-
tion. For example, students initially want to see 
if changing the color of the plankton impacts 
the system’s behavior. Later the students add a 
predator and see its impact on the simple ecosys-
tem (Figure 4). This addition entails using CT 
when developing a new agent and algorithms for 
its behavior. Subsequent experiments uncover a 
new pattern in the system, with the addition of 

a top predator, sometimes the fish population never grows above a 
certain threshold and the cycles of population booms and busts cease 
to exist. In this way, through a series of modifications and iterative 
refinements, new skills and new scientific understandings are devel-
oped as what was once someone else’s model becomes one’s own. 
A Project GUTS ecosystem unit incorporating this activity has 
been implemented and used successfully with diverse populations of 
middle school students both in the context of afterschool clubs and 
within regular school day mandatory classes over the past five years.

Recently, a set of StarLogo Nova modeling and simulation 
modules have also been developed by Project GUTS [17] for used 
in Earth, Life, and Physical Science contexts [2].

Figure 3. Screen capture from “Why Government? Short animation for my History class” in the 
Scratch environment.

Figure 2. Screen capture from “Charlotte’s Web” project in Scratch.
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the dots grow, introducing them to velocity and acceleration. In the 
Human Tickertape version, students carry a mobile device running 
the iSENSE data walk app. It’s an outdoor activity, and, as students 
go on a walk (or run), the data walk app records their position and 
velocity. Afterward, the data are uploaded to iSENSE, and stu-
dents view themselves and each other on a map, and interpret their 
data using other visualizations.

Figure 5 shows an example of the resulting data. The data sets 
are from students of a middle school science teacher who carried 
out the activity using the tennis courts behind her school. Stu-
dents were organized in teams and given directions for collecting a 
30-second sample of data—e.g., walk slowly for 30 seconds or run 
for 30 seconds. The maps show data from two teams of students, 

Computational Thinking with Data
iSENSE [8] is a set of web-based and mobile tools that enables 
sharing, collaboration, and visualization of real-world data sets 
[13]. At the iSENSE web site, teachers (and students) can author 
“projects,” which are structured repositories of data, usually for a 
specific investigation or purpose. Then students can contribute in-
dividual data sets (each of which may contain single or multiple 
rows of data). Once data sets are present, students and teachers can 
select them and visualize them, using a variety of tools, including a 
map view, time series view, and summarizing bar chart view.

Data for analysis on iSENSE may come from a variety of sourc-
es. Users may directly type data into a web page, or upload tabular 
data in Excel or CSV form. Data saved from classroom experi-
ments using probeware may be uploaded. Also, data sets 
published on the web may be downloaded and then up-
loaded to iSENSE for sharing and visualization. Custom 
mobile apps are available that use a device’s sensors—its 
GPS and accelerometer—to record data and directly up-
load it to iSENSE. One of these apps is the Data Walk, 
which is available for Android devices. This app records 
the user’s position, velocity, and instantaneous accelera-
tion at an adjustable rate (e.g. every second, or every 10 
seconds). After a short period of data capture, the data 
set is uploaded to the iSENSE web site for inspection 
and sharing [7].

In collaboration with two Boston-area teachers (one 
high school teacher and one middle school teacher), 
the iSENSE team developed a classroom unit called 
the “Human Tickertape.” The activity is modeled after 
earlier paper tape experiments created by physics teach-
ers, in which an apparatus marks a paper tape at regular 
timed intervals. As the paper tape is unfurled (e.g. by an 
accelerating mass), students can see the distance between Figure 5. Map visualization of six students’ data from Human Tickertape activity.

Figure 4. StarLogo TNG ecosystem simulation with and without predator.
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each with three participants. The teams did their work 
simultaneously, but in different parts of the school’s ten-
nis courts. When the students viewed their data, they saw 
that the group using the upper-left portion of the tennis 
courts (farther from the school) was running, while the 
other group of students walked. In the upper group, the 
distance between the map markers is larger, indicating 
that the three students in this group were moving faster. 
Students were able to use their own body memory of per-
forming the activity while interpreting the visualization.

Then students explored other views of the same data. 
For instance, the timeline view shows the six data walks 
using a velocity-vs.-time graph (Figure 6). Students were 
able to see that three of them were walking (reaching a 
maximum velocity between 1 and 2 meters per second) 
while the other three were running (reaching about 3.5 
meters per second). The three data sets from the “run-
ning group” show the quick acceleration to running speed 
terminated by a hard stop. The three data sets from the 
“walking group” show an approximately constant speed 
for the recording period.

Figure 7 presents yet another view of the same data, 
summarizing each student’s walk as a single bar chart 
of average velocity. This example in iSENSE highlights 
several important computational thinking practices with 
data. Students are using computational tools to “gather 
and manipulate data,” “use visual representations,” and 
analyze “multiple runs” of data. Furthermore, because 
the iSENSE system puts all of the students’ data into 
the same project container, it allows them to share and 
compare data in a facile way that’s afforded specifically 
by the computational medium. It’s also worth reflecting 
upon the idea of abstraction as it exists in these data ex-
plorations. Typically we discuss abstraction in the context 
of programming—for example, procedural abstraction or 
object-oriented abstraction. In this fashion, abstraction 
is about hiding information, yet simultaneously revealing 
the essentials of the matter.

In the progression of iSENSE visualizations, we can 
also see this principle in action. The map view abstracted 
the students’ real world motion to set of points on the 
map, showing students where they were, and also rep-
resenting velocity as the interval between the locations. 
The velocity timeline abstracted away the position infor-
mation, but highlighted the acceleration and deceleration in each 
student’s walk. The velocity bar graph collapsed the timeline into a 
single point of information—but more easily allowed comparisons 
among students’ walks. While this example came from a science 
class, these approaches are also valuable in mathematics. Teachers 
working with iSENSE have used it in math classes to help stu-
dents understand probability (e.g., having many students contrib-
ute dice rolls or other data from other random events to a project, 
and learning about the role of a large sample size) and proportional 
reasoning (e.g., comparing the length of one’s forearm and tibia for 
people of different heights).

CONCLUSION
Based on our experiences with youth learning CT, we offer con-
crete examples of activities that integrate into regular school day 
classes in K-8 to support the development of computational think-
ing. The tools and approaches presented in this article can be used 
in conjunction with project work across a variety of content areas. 
While implementing CT across the curriculum during the regular 
school day is a compelling vision, there remain substantial chal-
lenges to its implementation in some schools. These barriers in-
clude lack of space in the existing curriculum for computationally 
rich project work, lack of opportunities for teachers to learn CT as 

Figure 6. Timeline visualization of students’ data walks, showing velocity vs. time. 
Some of the data are overlaid because students were simultaneously recording their 
walks on two different devices; the graph shows all of their data together, regardless 
of which device initially recorded it.

Figure 7. The six data walks, presented as bar graphs of average velocity per walk. The 
data sets are color coded to match across the visualization tools.
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part of their professional development, and lack of access to nec-
essary infrastructure. Nonetheless, there are other teachers who 
are currently, or may become, well positioned to integrate CT in 
their classrooms. It is our hope that by describing some feasible ap-
proaches, these teachers, and potentially many others, may benefit 
from these practical approaches to embedding CT in K-8 that are 
both grounded in experience and linked to relevant standards.  Ir
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