
IMPACT OF AUTO-GRADING ON AN INTRODUCTORY

COMPUTING COURSE *

Mark Sherman, Sarita Bassil, Derrell Lipman, Nat Tuck, Fred Martin

Department of Computer Science

University of Massachusetts Lowell

Lowell, MA 01852

978-934-{1964, 3911, 1964, 1964, 1964}

{msherman, sbassil, dlipman, ntuck, fredm}@cs.uml.edu

ABSTRACT

This project presents and assesses the impact of a pedagogical tool, called

Bottlenose, deployed in an introductory Computer Science course. Bottlenose

is a web-based framework that accepts student submissions and presents

immediate feedback. Students may submit any number of times before the

assignment due date. We expect them to use the feedback from previous

submissions to improve their subsequent submissions. We compared student

behavior on assignments against previous semesters, which used the same

assignments, but with no automated feedback system. We observed that

students, when using the feedback system, make more submissions per

assignment, indicating that students were leveraging feedback to improve their

programs.

INTRODUCTION

We introduced a web-based framework, called Bottlenose, to provide students with

immediate, automated feedback in an introductory computing course, and assessed the

impact of that system on student learning.

During the course of the semester the students submitted approximately 50 C

programming exercises. The course typically has 40 to 60 individual programming

exercises, and 40 to 60 students in a course section. Unlike other web-based feedback

systems like BOSS [5], CourseMaker [3], and Web-CAT [2], Bottlenose is extremely

 Copyright © 2013 by the Consortium for Computing Sciences in Colleges. Permission to copy*

without fee all or part of this material is granted provided that the copies are not made or

distributed for direct commercial advantage, the CCSC copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the

Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a

fee and/or specific permission.

69

JCSC 28, 6 (June 2013)

lightweight and encodes very few pedagogical assumptions. Tests for a particular

assignment can be specified in any scripting language, and the testing programs can

invoke any tools available on the system on which Bottlenose is installed.

In the existing course, students must complete three or four small assignments per

week. The high frequency with which students are required to submit assignments means

that students may submit several assignments before receiving any feedback. Instructors

and graders may spend time correcting and penalizing the same error on several

assignments, when earlier feedback might have allowed a student to understand and

correct the error on all or most of their assignments. This prevents the graders from giving

feedback on more subtle errors, and tends to demoralize students and slow their progress.

From this perspective, Bottlenose was designed to achieve the following features:

 ! Accept student code.

 ! Run assignment-specific tests cases on student code.

 ! Allow any testing methods, frameworks, or tools the instructor desires in tests.

 ! Display test results to the student nearly immediately.

 ! Store the results of test cases for instructor (or human grader).

 ! Store student's code for manual review by instructor (or human grader).

 ! Provide an efficient interface for a human grader to review tests, read code, and

provide written feedback.

This is a common situation for institutions teaching computer science [4]. The above

features are aligned with the desirable features described by Ala-Mutka [1]. The system

described in this paper represents a secure, lightweight, and easy-to-use solution.

Specifically, this system is an online automatic assessment tool, which runs pre-made,

custom tests on student submissions, but also allows for easy human assessment of the

code and the test results.

Technical Description of System

Bottlenose was initially developed to support the teaching of a "flipped" course,

where students watch video lectures online before class to prepare for classroom

questions and discussion. It also included online submission and grading of programming

assignments, which are useful functions for traditional courses, as is examined in this

paper.

The system was built using the Ruby on Rails [6] web application development

framework. It runs on a Linux server, providing two main benefits: the system utilizes

many Linux security mechanisms, and, the tests for student code can access the variety

of Linux-based applications and tools. Student submissions are stored on the server file

system, and other data, including grades, are stored in a database.

A simple process for online submission of assignments is provided. Students are

emailed unique authentication links that bring them to their list of assignments, and

identify the students to the system. Assignments are submitted by uploading the

programming code directly in the web browser. Bottlenose supports assignments

requiring submission of a single source file, as well as those assignments requiring

multiple files, submitted as a compressed archive file. The automated grading process

70

CCSC: Northeastern Conference

begins immediately when an assignment is submitted, giving students feedback within

a few seconds. Students may attempt submissions multiple times.

In order to automatically grade student programs, submissions are compiled and run

on the server. Allowing students to run arbitrary code on the server is clearly a potential

security issue [4]. Bottlenose uses a sandbox mechanism to prevent student programs

from causing trouble. Five major techniques are used to isolate student programs from the

rest of the system:

 ! Separate system user - Each student program is run under a separate, limited

system user.

 ! Run in a sandbox - Student programs can only access specific, white-listed parts

of the file system.

 ! Disposable working directory - Each program is executed in a temporary file

system, which ceases to exist when the grading process is finished.

 ! Resource limits - Limits on a variety of resources, including RAM, child processes,

and created file size, are enforced on student programs.

 ! Watchdog timer - A grading process is terminated if it lasts more than a set time

limit.

This sandbox mechanism may be vulnerable to a clever student intentionally trying

to defeat it. Thus far we have not yet identified any exploit. It does perform adequately

at preventing the grading server from being disrupted by common student mistakes, like

infinite memory allocation loops, without the need for exotic isolation systems, virtual

machines, or additional servers.

Writing Tests

In preparation for student submissions of assignments to the system, the instructor

writes a set of test scripts, which automatically evaluate specific aspects of students'

programs. A test may evaluate, for example, that given specific input, the program

generates proper output; it may check whether certain required functions are provided by

the student's program; it can determine whether the program exited successfully or

crashed; it can execute unit tests; and more, as discussed below.

Tests can be written in any language. The only requirement for tests is that they

conform to the Test Anything Protocol (TAP) [7]. With TAP, a test outputs an indication

of the number of tests that will be run, e.g., 1..4 for four tests, followed by a line of output

for each test, which indicates whether the test, e.g., test #2, succeeded (ok 2) or failed (not

ok 2). The tests are otherwise free to provide input in any form to the program under test

and to retrieve output via their standard output mechanism or via a file. Tests are also free

to provide additional output, such as a description of the test to be run, or student's and

expected output, when a program does not yield the correct results.

The feedback that students receive is entirely written by the instructor, and is

generally displayed as a function of the success or failure of a particular test. To present

feedback to the student, the instructor simply prints to the screen in the test script. The

instructor may write feedback text based on any programmatic conditions.

71

JCSC 28, 6 (June 2013)

Given the flexibility of this testing harness, it is possible to run some interesting

tests on students' programs to let them know whether they are correctly accomplishing

their program's goal or not. The most common test we have written parses the output of

the student's program. Parsing could be a direct comparison, a regular expression, or a

custom program to process complex output. We have modified the student's source code

and executables, replacing system calls with reference implementations that provide

feedback of their use. We have isolated and unit-tested functions in the student code. We

have run some student programs inside memory-checker programs, and parsed the output

of the checker and returned it to the student. The test framework flexibility of Bottlenose

makes possible a plethora of other testing scenarios.

The simplicity of this platform allowed for any test to be written that can be realized

through another program. This makes the testing mechanism more flexible and robust

than those used in other C-language studies, such as Sterbini and Temperini [8], which

largely depend on comparing student code and results against a reference implementation.

With Bottlenose, the tests are written by the instructor to custom-fit the assignment,

which can require a significant investment in time and effort by the instructor, but

provides unsurpassed flexibility. Once written, tests can be re-used for subsequent course

offerings, and often, new tests can be largely based on those written previously.

Now, we will discuss research on student behavior on assignments that we

conducted after Bottlenose was introduced.

METHODOLOGY

Analysis was performed on historic course data, with IRB-approved protocols to

de-identify data and protect participants. The data included grades the students received

on their submissions to assignments, as well as the submissions themselves, which were

C source code files. Previous course offerings utilized a rudimentary, no-feedback

electronic submission system, which provided the basis against which the Bottlenose

offerings were compared.

Two forms of analysis were conducted: (1) an aggregate analysis, tallying all

submissions per assignment, per course offering, resulting in numbers of student

submissions per assignment for each course section, and (2) a fine-grain submission rate

analysis, where the distribution of submission rates among students was visible.

The analysis used data from seven offerings of the same introductory computing

course, spanning four semesters and three instructors. The data included participating

students, defined as those who submitted for at least one programming assignment.

Assignments that were not programming assignments were also removed from the data,

such as in-class paper exercises, quizzes, and tests. All sections of the course used a

common, core set of assignments. Assignments that deviated greatly from the common

set, such as those with novel specifications or dependent on new concepts, were removed

from the data.

72

CCSC: Northeastern Conference

RESULTS

Aggregate analysis showed a substantial increase in the number of submissions

students made when using Bottlenose, compared to the no-feedback electronic

submission system. Shown in Table 1, course sections M1-M4 were electronically

submitted but provided no immediate results, and sections A1-A3 used Bottlenose (M =

manual/non-automatic feedback; A = automatic feedback). The numbers of total

submissions made, participating students, and assignments were divided to create a

"Submissions per Student per Assignment" descriptor, which indicated the general rates

of submissions per assignment in each section. A value of 1.0 would indicate that, on

average, every student made one submission for every assignment. For any given

assignment, there was a subset of students who did not submit an attempt for it, which

lowered the average submission rates.

Table 1: Submission rates among course sections

We also used a finer analysis technique, where the average submission rate per

assignment was computed for each student. With this, we could see the distribution of

submission rates within the course sections. In Figure 1, we can see the changes in that

distribution between the sections that used Bottlenose (automatic) and those that did not

(manual). The sections that used Bottlenose show a slightly wider, right-tailed

distribution, with the peak at a higher submission rate (1.77) than the manually graded

sections (1.26).

DISCUSSION

The standard deviation of the Submission/Student/Assignment rates of the manually

graded sections, as seen in Table 1, was 0.013, indicating that, despite spanning multiple

semesters and multiple instructors, submission rates before the introduction of Bottlenose

were consistent. The course sections that used Bottlenose had higher submission rates

than those that did not. This increase was significant (p<.001), showing that students, on

average, made nearly twice as many attempts on an assignment when using the

feedback-providing automatic assessment system.

As shown in Figure 1, in the course sections that did not provide automatic

feedback, a large portion of the students submitted, on average, just over once per

assignment for every assignment. In those sections, almost none of the students had

averages above two submissions per assignment. In the sections that used Bottlenose, a

greater number of students submitted more than once, and many more submitted more

73

JCSC 28, 6 (June 2013)

than 1.5 times per assignment. Some students submitting more than twice per assignment,

or more, with Bottlenose, which occurred rarely in sections without the feedback system.

The lack of significantly higher average submission rates (six or more) indicated that

students were not using Bottlenose as their only compiler, or abusing the re-submission

mechanism, which were common concerns in the literature.

Figure 1: Distributions of how many students had similar submission rates, with and

without the automatic Bottlenose feedback and submission system.

CONCLUSIONS AND FUTURE WORK

The results from the use of Bottlenose indicate a healthy change in mindset towards

submitting, where students are using the system to help them make one or two additional

iterations on their program.

There is a wealth of data from this study remaining to be analyzed, including the

quality of student iterations and products. In using this system, many tests were written

by the instructors, which include the feedback that the students see. There may be

relationships between the types of tests used, the quality and kind of feedback provided

to the student, and student performance. This avenue of study is promising. There are also

numerous case studies to be extracted from the data, which show individual students

using the feedback from Bottlenose to inform their iterations of work. These will be

presented in a future publication.

74

CCSC: Northeastern Conference

ACKNOWLEDGEMENTS

We offer special thanks to Prof. Anne Mulhern for reviewing the paper and

providing us with valuable input. Thanks also go to James DeFilippo for his work on the

auto-assessment prototype project. This material is based upon work supported by the

National Science Foundation under Grant No. DUE-1225719.

REFERENCES

[1] Ala-Mutka, K., A survey of automated assessment approaches for programming

assignments, Computer Science Education, 15, (2), 83-102, 2005.

[2] Edwards, S., Perez-Quinones, M., Web-CAT: automatically grading

programming assignments, In Proceedings of the 13th Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE '08), 2008.

[3] Higgins, C., Gray, G., Symeonidis, P., Tsintsifas, A., Automated assessment and

experiences of teaching programming, ACM Journal on Educational Resources

in Computing, 5, (3), 5, 2005.

[4] Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O., Review of recent systems

for automatic assessment of programming assignments, In Proceedings of the

10th Koli Calling International Conference on Computing Education Research

(Koli Calling '10), 86-93, 2010.

[5] Joy, M., Griffiths, N., Boyatt, R., The BOSS online submission and assessment

system, ACM Journal on Educational Resources in Computing, 5, (3), 2, 2005.

[6] Ruby on Rails, http://rubyonrails.org/ , retrieved November 15, 2012.

[7] Schwern, M., Lester, A., Documentation for the TAP format, 2003,

http://search.cpan.org/~petdance/Test-Harness-2.64/lib/Test/Harness/TAP.pod ,

retrieved November 15, 2012.

[8] Sterbini, A., Temperini, M., Automatic correction of C programming exercises

through unit-testing and aspect-programming, In Proceedings of the 2nd

International Conference on Educational Information Systems, Technologies,

and Applications (EISTA '04), 6, 2004

75

